Vegetation drought monitoring from MODIS imagery and soil moisture data in Oklahoma Mesonet sites

Autores/as

  • Diana Ximena Vanegas Universidad El Bosque
  • Xiangming Xiao University of Oklahoma
  • Jeffrey Basara University of Oklahoma

DOI:

https://doi.org/10.18270/rt.v13i2.1879

Palabras clave:

MODIS, vegetation drought monitoring, grassland, land surface water index

Resumen

Drought is a normal and recurrent climatic phenomenon, and is considered one of the most costly natural disasters in the United States. Grassland vegetation is sensitive to weather and climate, and persistent drought impacts goods and ecological services that grasslands provide (e.g., wildlife habitats, feedstock for the livestock industry, and recreational services). Droughts have extremely large spatial and temporal variations in areal coverage and intensity making drought monitoring a challenging task. Using soil and atmospheric data from the Oklahoma Mesonet and surface reflectance data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, this study examined the hypothesis that the satellite-derived Land Surface Water Index (LSWI) is sensitive to drought conditions and can potentially be used as an indicator or tool for drought monitoring. The sensitivity of LSWI to summer drought was first analyzed at 10 Mesonet sites that are homogeneous and representative of different types of grassland vegetation, soils and climate across Oklahoma. A summer drought event is defined, based on threshold values of LSWI and the Fractional Water Index (FWI) derived from soil moisture data at each site.

Secondly, the LSWI-based drought algorithm was evaluated at
103 Oklahoma Mesonet sites. Finally, the LSWI-based drought
algorithm was used to map spatial patterns and temporal dynamics
of drought-affected land surface during 2001-2010 across
Oklahoma. The results from this study demonstrated the potential
of LSWI-based drought algorithm for tracking and mapping
drought-affected grassland vegetation in Oklahoma with 3%
commission error in the Oklahoma Mesonet sites during 2001-2010.

La sequía es un fenómeno climático normal y recurrente, y es considerado uno de los desastres naturales más costosos en Estados Unidos. La vegetación de pastizales es sensible al estado del tiempo y el clima, y la persistencia de la sequía afecta a los bienes y servicios ecológicos que proporcionan los pastizales (por ejemplo, son hábitats de vida silvestre, proveen materia prima para la industria ganadera, así como servicios de esparcimiento). La cobertura de área e intensidad de las sequías presentan grandes variaciones espaciales y temporales, haciendo que el monitorea de sequías sea una tarea difícil. Usando datos atmosféricos y de suelos de la Oklahoma Mesonet, y datos de reflectancia de la superficie terrestre del espectrorradiómetro de imágenes de resolución moderada (MODIS, por sus siglas en inglés) a bordo de los satélites Terra y Aqua, este estudio examinó la hipótesis de que el índice de agua de la superficie del terreno (LSWI, por sus siglas en inglés) es sensible a condiciones de sequía y potencialmente puede utilizarse como un indicador o herramienta para la monitoreo de sequías. La sensibilidad del LSWI a la sequía estival se analizó inicialmente en 10 sitios Mesonet que son homogéneos y representativos de los diferentes tipos de vegetación de pastizales, los suelos y el clima a través de Oklahoma. Un evento de sequía estival se define, en base a los valores de umbral de LSWI y el Índice de Agua fraccional (FWI) derivado de los datos de humedad del suelo en cada sitio. Posteriormente, el algoritmo de sequía basado en LSWI se evaluó en 103 sitios Oklahoma Mesonet. Por último, se utilizó el algoritmo de sequía basado en LSWI para mapear los patrones espaciales y la dinámica temporal de la superficie de la tierra afectada por la sequía durante 2001-2010 a través de Oklahoma. Los resultados de este estudio demostraron el potencial del algoritmo de sequía basado en LSWI para el seguimiento y la cartografía de vegetación de pradera afectada por la sequía en Oklahoma con un 3% de error de comisión en los sitios Oklahoma Mesonet durante 2001-2010

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Diana Ximena Vanegas, Universidad El Bosque

Environmental Engineer, El Bosque University (2006), Masters in Geoinformatics, University of
Oklahoma – USA (2011). Work experience as the Environmental Engineer at a Local mayor office
in Bogota DC (2006 - 2008); professional research assistant at Earth Observation and Modeling
Facility (http://eomf.ou.edu/), the University of Oklahoma (2009-2012) and virtual teacher of the
Environmental Engineering program at El Bosque University (2012-2014).

Xiangming Xiao, University of Oklahoma

Is a Professor of Ecology and Remote Sensing at the Department of Microbiology and Plant Biology
(http://mpbio.ou.edu). His research interest include remote sensing, land use and land cover change,
carbon cycle, and infectious disease ecology. He has published 150 papers and book chapters.

Jeffrey Basara, University of Oklahoma

Jeffrey Basara is an Associate Professor in the School of Meteorology (http://weather.ou.edu) at the
University of Oklahoma and the Director of Research at the Oklahoma Climatological Survey. His
research interests include the physical processes which impact land-atmosphere interactions, the
planetary boundary layer, drought, flash floods, and urban meteorology.

Referencias bibliográficas

Novick, K.A., Stoy, P.C., Katul, G.G., Ellsworth,

D.S., Siqueira, M.B.S., Juang, J., & Oren, R. (2004).

Carbon dioxide and water vapor exchange in a

warm temperate grassland. Oecologia, 138, 259-274

White, R.P., Murray, S., Rohweder, M. (2000). Pilot

Analysis of Global Ecosystems: Grassland Ecosystems.

In (p. 81): World Resources Institute White,

R.P., Murray, S., Rohweder, M. (2000). Pilot Analysis

of Global Ecosystems: Grassland Ecosystems. In

(p. 81): World Resources Institute

Conner, R., Seidl, A., VanTassell, L., Wilkins, N.

(2001). United States Grasslands and Related

Resources: An Economic and Biological Trends

Assessment. In, US Grasslands: Economic & Biological

Trends (p. 170). Austin: Texas A&M University

Mayeux, H. (2001). The Extent, General Characteristics,

and Carbon Dynamics of U.S. Grazing Lands.

The potential of U.S. grazing lands to sequester

carbon and mitigate greenhouse effect: Lewis

Publishers, CRC Press LLC.

Foody, G.M., & Dash, J. (2010). Estimating the relative

abundance of C-3 and C-4 grasses in the Great

Plains from multi-temporal MTCI data: issues of

compositing period and spatial generalizability.

International Journal of Remote Sensing, 31, 351-362

Namias, J. (1982). Anatomy of Great Plains Protracted

Heat Waves (especially the 1980 U.S. summer

drought). Monthly Weather Review, 110, 824-838

Trenberth, K.E., Branstator, G.W., & Arkin, P.A.

(1988). Origins of the 1988 North American

Drought. Science, 242, 1640-1645

Hong, S.-Y., & Kalnay, E. (2000). Role of sea surface

temperature and soil-moisture feedback in the 1998

Oklahoma-Texas drought. Nature, 408, 842-844

Schubert, S.D., Suarez, M.J., Pegion, P.J., Koster,

R.D., & Bacmeister, J.T. (2004). Causes of Long-

Term Drought in the U.S. Great Plains. Journal of

Climate, 17, 485-503

Andreadis, K.M., Clark, E.A., Wood, A.W., Hamlet,

A.F., & Lettenmaier, D.P. (2005). Twentieth-Century

Drought in the Conterminous United States.

Journal of Hydrometeorology, 6, 985-1001

McCrary, R.R., & Randall, D.A. (2009). Great Plains

Drought in Simulations of the Twentieth Century.

Journal of Climate, 23, 2178-2196

Wang, J. (2007). FPGA Design for Real-Time Implementation

of Constrained Energy Minimization for

Hyperspectral Target Detection. High Performance

Computing in Remote Sensing: Chapman and Hall/CRC

Zhang, X.Y., Goldberg, M., Tarpley, D., Friedl, M.A.,

Morisette, J., Kogan, F., & Yu, Y.Y. (2010). Droughtinduced

vegetation stress in southwestern North

America. Environmental Research Letters, 5

Gu, Y.X., Hunt, E., Wardlow, B., Basara, J.B., Brown,

J.F., & Verdin, J.P. (2008). Evaluation of MODIS

NDVI and NDWI for vegetation drought monitoring

using Oklahoma Mesonet soil moisture data.

Geophysical Research Letters, 35

Palmer, W.C. (1965). Meteorological drought. In.

Washington, D.C.: U.S. Department of Commerce

Weather Bureau

McKee, T.B., Doesken, N.J., & Kleist, J. (1993). The

relationship of drought frequency and duration. In,

Preprints, 8th Conference on Applied Climatology

(pp. 179-184). Anaheim, CA

McKee, T.B., Doesken, N.J., & Kleist, J. (1995).

Drought monitoring with multiple time scales. In,

Preprints, 9th Conference on Applied Climatology

(pp. 233-236). Dallas, TX

Anderson, L.O., Malhi, Y., Aragao, L., Ladle, R.,

Arai, E., Barbier, N., & Phillips, O. (2010). Remote sensing detection of droughts in Amazonian forest

canopies. New Phytologist, 187, 733-750

Tucker, C.J., & Choudhury, B.J. (1987). SATELLITE

REMOTE-SENSING OF DROUGHT CONDITIONS.

Remote Sensing of Environment, 23, 243-251

Bayarjargal, Y., Karnieli, A., Bayasgalan, M.,

Khudulmur, S., Gandush, C., & Tucker, C.J. (2006).

A comparative study of NOAA-AVHRR derived

drought indices using change vector analysis.

Remote Sensing of Environment, 105, 9-22

Gonzalez Alonso, F., Cuevas, J.M., Casanova, J.L.,

Calle, A., & Illera, P. (1995). Drought monitoring in

Spain using satellite remote sensing. Sensors and

environmental applications of remote sensing, 87-90

Jain, S.K., Keshri, R., Goswami, A., & Sarkar, A. (2010).

Application of meteorological and vegetation indices

for evaluation of drought impact: a case study for

Rajasthan, India. Natural Hazards, 54, 643-656

Kamble, M.V., Ghosh, K., Rajeevan, M., & Samui,

R.P. (2010). Drought monitoring over India through

Normalized Difference Vegetation Index (NDVI).

Mausam, 61, 537-546

Kogan, F.N. (1997). Global drought watch from

space. Bulletin of the American Meteorological

Society, 78, 621-636

Liu, W.T., & Juarez, R.I.N. (2001). ENSO drought

onset prediction in northeast Brazil using NDVI.

International Journal of Remote Sensing, 22,

-3501

Murthy, C.S., Sai, M., Chandrasekar, K., & Roy, P.S.

(2009). Spatial and temporal responses of different

crop-growing environments to agricultural drought:

a study in Haryana state, India using NOAA AVHRR

data. International Journal of Remote Sensing, 30,

-2914

Tucker, C.J. (1989). COMPARING SMMR AND

AVHRR DATA FOR DROUGHT MONITORING. International

Journal of Remote Sensing, 10, 1663-1672

Karnieli, A., Agam, N., Pinker, R.T., Anderson, M.,

Imhoff, M.L., Gutman, G.G., Panov, N., & Goldberg,

A. (2010). Use of NDVI and Land Surface

Temperature for Drought Assessment: Merits and

Limitations. Journal of Climate, 23, 618-633

Gao, B.C. (1996). NDWI - A normalized difference

water index for remote sensing of vegetation liquid

water from space. Remote Sensing of Environment,

, 257-266

Gu, Y.X., Brown, J.F., Verdin, J.P., & Wardlow, B.

(2007). A five-year analysis of MODIS NDVI and

NDWI for grassland drought assessment over the

central Great Plains of the United States. Geophysical

Research Letters, 34, L06407

Liu, C.L., Wu, B.F., Tian, Y.C., Xu, W.B., & Huang,

J.X. (2004). Crop drought monitoring using serial

NDVI&NDWI in Northern China. Igarss 2004: Ieee

International Geoscience and Remote Sensing

Symposium Proceedings, Vols 1-7, 2264-2267

Xiao, X.M., Boles, S., Liu, J.Y., Zhuang, D.F., & Liu,

M.L. (2002). Characterization of forest types in

Northeastern China, using multi-temporal SPOT-4

VEGETATION sensor data. Remote Sensing of Environment,

, 335-348

Xiao, X.M., Hollinger, D., Aber, J., Goltz, M.,

Davidson, E.A., Zhang, Q.Y., & Moore, B. (2004).

Satellite-based modeling of gross primary production

in an evergreen needleleaf forest. Remote

Sensing of Environment, 89, 519-534

Kalfas, J.L., Xiao, X., Vanegas, D.X., Verma, S.B.,

& Suyker, A.E. (2011). Modeling gross primary

production of irrigated and rain-fed maize using

MODIS imagery and CO2 flux tower data. Agricultural

and Forest Meteorology, 151, 1514-1528

Illston, B.G., Basara, J.B., & Crawford, K.C. (2004).

Seasonal to interannual variations of soil moisture

measured in Oklahoma. International Journal of

Climatology, 24, 1883-1896

Illston, B.G., Basara, J.B., Fiebrich, C.A., Crawford,

K.C., Hunt, E., Fisher, D.K., Elliott, R., & Humes,

K. (2008). Mesoscale Monitoring of Soil Moisture

across a Statewide Network. Journal of Atmospheric

and Oceanic Technology, 25, 167-182

McPherson, R.A., Fiebrich, C.A., Crawford, K.C.,

Elliott, R.L., Kilby, J.R., Grimsley, D.L., Martinez, J.E.,

Basara, J.B., Illston, B.G., Morris, D.A., Kloesel, K.A.,

Stadler, S.J., Melvin, A.D., Sutherland, A.J., Shrivastava,

H., Carlson, J.D., Wolfinbarger, J.M., Bostic,

J.P., & Demko, D.B. (2007). Statewide monitoring

of the mesoscale environment: A technical update

on the Oklahoma Mesonet. Journal of Atmospheric

and Oceanic Technology, 24, 301-321

Lillesand, T., Kiefer, R., Chipman, J. (2008). Remote

sensing and image interpretation, 6th edition. (6

ed.). John Wiley & Sons New York

Justice, C.O., Townshend, J.R.G., Vermote, E.F.,

Masuoka, E., Wolfe, R.E., Saleous, N., Roy, D.P.,

and Morisette, J.T. 2002. An overview of MODIS

Land data processing and product status. Remote

Sensing of Environment 83 (1-2):3-15

Xiao, X.M., Boles, S., Frolking, S., Li, C.S., Babu,

J.Y., Salas, W., & Moore, B. (2006). Mapping paddy

rice agriculture in South and Southeast Asia using

multi-temporal MODIS images. Remote Sensing of

Environment, 100, 95-113

Xiao, X.M., Boles, S., Liu, J.Y., Zhuang, D.F., Frolking,

S., Li, C.S., Salas, W., & Moore, B. (2005).

Mapping paddy rice agriculture in southern China

using multi-temporal MODIS images. Remote

Sensing of Environment, 95, 480-492

Xiao, X.M., Zhang, Q.Y., Braswell, B., Urbanski, S., Boles,

S., Wofsy, S., Berrien, M., & Ojima, D. (2004). Modeling

gross primary production of temperate deciduous

broadleaf forest using satellite images and climate data.

Remote Sensing of Environment, 91, 256-270

Schneider, J.M., Fisher, D.K., Elliott, R.L., Brown, G.O.,

& Bahrmann, C.P. (2003). Spatiotemporal variations

in soil water: First results from the ARM SGP CART

network. Journal of Hydrometeorology, 4, 106-120

Dong, X., Xi, B., Kennedy, A., Feng, Z., Entin, J.K.,

Houser, P.R., Schiffer, R.A., L’Ecuyer, T., Olson, W.S.,

Hsu, K.-l., Liu, W.T., Lin, B., Deng, Y., & Jiang, T.

(2011). Investigation of the 2006 drought and

flood extremes at the Southern Great Plains

through an integrative analysis of observations.

Journal of Geophysical Research, 116

Kogan, F.N. (1995). Droughts of the Late 1980s

in the United-States as Derived from Noaa Polar-

Orbiting Satellite Data. Bulletin of the American

Meteorological Society, 76, 655-668

Shakya, N., & Yamaguchi, Y. (2010). Vegetation,

water and thermal stress index for study of drought

in Nepal and central northeastern India. International

Journal of Remote Sensing, 31, 903-912

Basara, J.B., & Crawford, K.C. (2002). Linear relationships

between root-zone soil moisture and atmospheric

processes in the planetary boundary layer. Journal of

Geophysical Research-Atmospheres, 107

Famiglietti, J.S., Devereaux, J.A., Laymon, C.A.,

Tsegaye, T., Houser, P.R., Jackson, T.J., Graham,

S.T., Rodell, M., & van Oevelen, P.J. (1999). Groundbased

investigation of soil moisture variability within

remote sensing footprints during the Southern

Great Plains 1997 (SGP97) Hydrology Experiment.

Water Resources Research, 35, 1839-1851

Jackson, R.B., Canadell, J., Ehleringer, J.R., Mooney,

H.A., Sala, O.E., & Schulze, E.D. (1996). A global

analysis of root distributions for terrestrial biomes.

Oecologia, 108, 389-411

Sun, G., Coffin, D.P., & Lauenroth, W.K. (1997).

Comparison of root distributions of species in

North American grasslands using GIS. Journal of

Vegetation Science, 8, 587-596

Canadell, J., Jackson, R.B., Ehleringer, J.R., Mooney,

H.A., Sala, O.E., & Schulze, E.D. (1996). Maximum

rooting depth of vegetation types at the global

scale. Oecologia, 108, 583-595

Schulze, E.D., Mooney, H.A., Sala, O.E., Jobbagy,

E., Buchmann, N., Bauer, G., Canadell, J., Jackson,

R.B., Loreti, J., Oesterheld, M., & Ehleringer, J.R.

(1996). Rooting depth, water availability, and vegetation

cover along an aridity gradient in Patagonia.

Oecologia, 108, 503-511

Desilets, D., Zreda, M., & Ferre, T.P.A. (2010).

Nature’s neutron probe: Land surface hydrology at

an elusive scale with cosmic rays. Water Resources

Research, 46

Zreda, M., Desilets, D., Ferre, T.P.A., & Scott, R.L.

(2008). Measuring soil moisture content non-invasively

at intermediate spatial scale using cosmic-ray

neutrons. Geophysical Research Letters, 35

Brown, J.F., Wardlow, B.D., Tadesse, T., Hayes,

M.J., & Reed, B.C. (2008). The Vegetation Drought

Response Index ( VegDRI): A new integrated

approach for monitoring drought stress in vegetation.

Giscience & Remote Sensing, 45, 16-46

Brown, M.E., Pinzon, J.E., Didan, K., Morisette, J.T.,

& Tucker, C.J. (2006). Evaluation of the consistency

of long-term NDVI time series derived from AVHRR,

SPOT-Vegetation, SeaWiFS, MODIS, and Landsat

ETM+ sensors. Ieee Transactions on Geoscience

and Remote Sensing, 44, 1787-1793

Kogan, F.N. (2000). Satellite-observed sensitivity of

world land ecosystems to El Nino/La Nina. Remote

Sensing of Environment, 74, 445-462

Descargas

Publicado

2016-10-10