Diseño e Implementación del Sistema Electrónico y Comunicación para el Control un Robot Modular Tipo Serpiente
PDF ()

Palabras clave

Sistema electrónico
comunicación

Resumen

Este proyecto consiste en el desarrollo de un sistema electrónico para manipular a un robot serpiente de manera modular; se implementaron tarjetas electrónicas en una relación maestro-esclavas para el control articular de cada módulo mecánico. Estas tarjetas se componen de un DSPic30F4011, microcontrolador de 16 bits de Microchip que incorpora el modulo CAN, protocolo esencial para la comunicación entre tarjetas, salidas PWM para el control de motores, puertos análogos y digitales; como también un socket para conectarse a un dispositivo externo a través de la UART. El firmware ha sido escrito en MikroC Pro. Cada microcontrolador implementa una ecuación característica proveniente de las curvas de Hirose para generar un movimiento serpentino. Este movimiento se simuló usando ROS (Robotic Operating System) en Rviz y finalmente se implementó en el prototipo robot.

https://doi.org/10.18270/rt.v16i2.2525
PDF ()

Referencias

J. K. Hopkins, B.W. Spranklin, and S.K. Gupta, A

survey of snake-inspired robot designs. Bioinspiration

and Biomimetics, 4(2):021001, 2009.

Shigeo Hirose and Hiroya Yamada, Snake-Like

Robots, Machine Design of Biologically Inspired

Robots, IEEE Robotics & Automation Magazine,

March 2009

Kevin J. Dowling, Limbless Locomotion: Learning

to Crawl with a Snake Robot, The Robotics Institute

Carnegie Mellon University and NASA Graduate

Fellowships, December 1997.

Saori Sugita, Kazunori Ogami, Guarnieri Michele,

Shigeo Hirose, and Kensuke Takita, A Study on

the Mechanism and Locomotion Strategy for New

Snake-Like Robot Active Cord Mechanism–Slime

model 1 ACM-S1, Journal of Robotics andMechatronicsVol.

No.2, 2008.

Cornell Wright, Austin Buchan, Ben Brown, Jason

Geist, Michael Schwerin, David Rollinson, Matthew

Tesch, and Howie Choset, Design and Architecture

of the Unified Modular Snake Robot, 2012 IEEE

International Conference on Robotics and Automation

(ICRA), 14-18 May 2012.

Shumei Yu, Shugen Ma, Bin Li, Yuechao Wang, An

Amphibious Snake-like Robot: Design and Motion

Experiments on Ground and in Water, Proceedings

of the 2009 IEEE International Conference on Information

and Automation, June 22 -25, 2009, Zhuhai/

Macau, China.

Aksel A. Transeth, Remco I. Leine, Christoph

Glocker and Kristin Y. Pettersen, 3D Snake Robot

Motion: Nonsmooth Modeling, Simulations, and

Experiments, IEEE transactions on robotics, vol. 24,

no. 2, April 2008.

Hiroya Yamada and Shigeo Hirose, Study of a

-DOF Joint for the Small Active Cord Mechanism,

IEEE International Conference on Robotics

and Automation Kobe International Conference

Center, Kobe, Japan, May 12-17, 2009.

A.J. Ijspeert and A. Crespi; Online trajectory

generation in an amphibious snake robot using

a lamprey-like central pattern generator model,

Proceedings of the 2007 IEEE International Conference

on Robotics and Automation (ICRA 2007),

pages 262-268,

David Rollinson; Control and Design of Snake

Robots; School of Computer Science Carnegie

Mellon University, 2014.

Chaohui Gong, Matthew J. Travers, Henry C. Astley, Lu

Li, Joseph R. Mendelson, Daniel I. Goldman and Howie

Choset; Kinematic gait synthesis for snake robots; The

International Journal of Robotics Research 1–14, DOI:

1177/0278364915593793, 2015

Filippo Sanfilippo, Øyvind Stavdahl and Pal

Liljeback; SnakeSIM: A Snake Robot Simulation

Framework for Perception-Driven Obstacle-Aided

Locomotion; Proceeding of the 2nd International

Symposium on Swarm Behavior and Bio-Inspired

Robotics (SWARM), Kyoto, Japan, 2017.

Filippo Sanfilippo, Øyvind Stavdahl and Pal Liljeback;

SnakeSIM: a ROS-based Rapid-Prototyping

Framework for Perception-Driven Obstacle-Aided

Locomotion of Snake Robots; Proceeding of the

IEEE International Conference on Robotics and

Biomimetics (ROBIO 2017).

Stian Grøttum Danielsen; Perception-Driven

Obstacle-Aided Locomotion for snake robots,

linking virtual to real prototypes; Norwegian

University of Science and Technology, 2017

Alexandru Micu ; Research of snakes’ straight-line movement

could power the rescue bots of the future; January

th, 2018 [online] https://www.zmescience.com

Biorobotics laboratory; http://biorobotics.ri.cmu.

edu/projects/modsnake/

Rausch Electronics USA; http://rauschusa.com/

Aries Industries; http://www.ariesindustries.com/

Ibak; http://www.ibak.de

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.