Sistema Macro & Micro robótico para aplicaciones médicas

Autores/as

  • Hernando León Rodríguez Universidad Militar Nueva Granada

DOI:

https://doi.org/10.18270/rt.v16i2.2524

Palabras clave:

Sistemas toboticos, Sistemas roboticos, Aplicaciones medica, aplicaciones medicas

Resumen

Los robots para aplicaciones médicas en la macro y micro escala son la combinación de la tecnología de fabricación tradicional con tecnología de MEMS (micro electro-mechanical systems) sumadas con tecnologías como nano-tecnología, ingeniería biomédica y ciencia de los Materiales. Los robots en la macro escala para aplicación medica son dispositivos adaptados y desarrollados para hospitales traídos de tecnologías de aplicaciones industriales. Sin embargo, para minimizar la cirugía, el dolor y el sangrado en el paciente, los micros robots es una tecnología emergente que sería capaz de llegar con micro-cámaras, nano-sensores, y micro-manipuladores a áreas del cuerpo que no requerirán de cirugía sino utilizaran los orificios naturales del cuerpo. Este artículo se enfoca en una revisión bibliográfica de algunos Macro-Micro Robots Médicos que podrían ser parte del servicio de salud en un futuro cercano.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Hernando León Rodríguez, Universidad Militar Nueva Granada

Hernando Leon Rodriguez awarded his Ph.D. (2008) in climbing and amphibious robot for none destructive testing en London South Bank University- England. Since 2008, he been working as a research and lecturer in several macro robots projects sponsor by Nueva Granada Military University in Colombia for industrial application. In 2013, he begins to research in micro robot in Chonnam National University in Korea; currently, his new research interests are bio-inspired micro robot and micromanipulation for biomedical applications.

Referencias bibliográficas

B Davies; A review of robotics in surgery; Proc Instn

Mech Engrs Vol 214 Part H; IMechE 2000

S J Harris, F Arambula-Cosio, Q Mei, R D Hibberd,

B L Davies, J E A Wickham, M S Nathan, B Kundu,

The Probot—an active robot for prostate resection;

Proceedings of the Institution of Mechanical Engineers,

Part H: Journal of Engineering in Medicine

Vol 211, Issue 4, pp. 317 – 325; 1997

Ashutosh Tewari, James Peabody, Richard Sarle,

Guruswami Balakrishnan, Ashok Hemal, Alok Shrivastava,

and Mani Menon; Technique of Da Vinci

Robot-Assisted Anatomic Radical Prostatectomy;

, ELSEVIER SCIENCE INC.

Microbotmedical, “Virob, Life in motion”; ©

Microbot Medical Inc., 2017; [En línea]. Disponible

en: http://www.microbotmedical.com/; [Accedido:

-may-2018]

Stephanie Lemmo Ham, Ehsan Atefi, Darcy Fyffe,

Hossein Tavana; Robotic Production of Cancer

Cell Spheroids with an Aqueous Two-phase

System for Drug Testing; . J. Vis. Exp. (98), e52754,

doi:10.3791/52754 (2015).

Shilpa Pandey, Nitisha Payal,Aarti Sharma; Robots

and Robotically Assisted Surgeries; International

Journal of Scientific Research Engineering & Technology

(IJSRET); Volume 1 Issue 5 pp 294-298

August 2012

Narendra Nathoo, M.D., Ph.D., M Cenk Çavuşoğlu,

Ph.D., Michael A. Vogelbaum, M.D., Ph.D., Gene

H. Barnett, M.D.; In Touch with Robotics: Neurosurgery

for the Future, Neurosurgery, Volume 56,

Issue 3, 1 March 2005, Pages 421–433.

McKesson; ROBOT-Rxm; © 2018 McKesson Corporation

[En línea]. Disponible en: http://www.

mckesson.com; [Accedido: 20-may-2018]

J.A. Osborne; ForHEalth Technologies Inc, USA,

IntelliFill iv; Disponible en: https://www.gerpac.eu/

intellifill-i-v; [Accedido: 20-may-2018]

Mary Inguanti; The IntelliFill iv for Health Technology;

PP&P, 2006.

Falk, Volkmar MD; Diegler, Anno MD, PhD; Walther,

Thomas MD; Autschbach, Rudiger MD, PhD; Mohr,

Friedrich W. MD, PhD; Developments in robotic

cardiac surgery; Current Opinion in Cardiology:

November 2000 - Volume 15 - Issue 6 - pp 378-387.

Jesús Moreno Sierra, Carlos Núñez Mora, Mª Isabel

Galante Romo, Sara Prieto Nogal, José López García

Asenjo1, y Angel Silmi Moyano.; Prostatectomía Radical

Asistida por Robot Da Vinci®: Un Año de Experiencia

en ll Hospital Clínico san Carlos; Laparoscopia y Robótica

Arch. Esp. Urol., 61, 3 (385-396), 2008.

Chris S. Karas, E. Antonio Chiocca; Neurosurgical

robotics: a review of brain and spine applications;

Journal of Robotic Surgery; March 2007, Volume 1,

Issue 1, pp 39–43.

Davinci Surgical System, Intuitive Surgical 2018;

Disponible en:; https://www.intuitivesurgical.com;

[Accedido: 20-may-2018]

Fink Densford; Intuitive Surgical wins FDA not for

daVinci X platform; Disponible en: http://www.

massdevice.com; [Accedido: 30-may-2017]

MinJun Kim, Anak Agung Julius, U Kei Cheang;

Microbiorobotics, Biologically Inspired Micro-scale

Robotic Systems, Elsevier, 2017.

Bradley J. Nelson, Ioannis K. Kaliakatsos, and Jake

J. Abbott; Microrobots for Minimally Invasive Medicine;

Institute of Robotics and Intelligent Systems,

ETH Zurich, Zurich, Switzerland; 2010.

Stefano Fusco, Franziska Ullrich, Juho Pokki,

George Chatzipirpiridis, Berna Ozkale, Kartik M

Sivaraman, Olgac¸ Ergeneman, Salvador Pane &

Bradley J Nelson; Microrobots: a new era in ocular

drug delivery; Institute of Robotics and Intelligent

Systems, ETH Zurich, Zurich, Switzerland; 2014.

Van Du Nguyen, Ji-Won Han, Young Jin Choi,

Sunghoon Cho, Shaohui Zheng, Seong Young Ko,

Jong-Oh Park, Sukho Park; Active tumor-therapeutic

liposomal bacteriobot combining a drug

(paclitaxel)-encapsulated liposome with targeting

bacteria (Salmonella Typhimurium); Sensors and

Actuators B 224 (2016) 217–224.

Chungseon Yu, Juhyun Kim, Hyunchul Choi,

Jongho Choi, Semi Jeong, Kyoungrae Cha, Jong-oh Park, Sukho Park; Novel electromagnetic actuation

system for three-dimensional locomotion and

drilling of intravascular microrobot; Sensors and

Actuators A 161 (2010) 297–304.

Sukho Park, Kyoungrae Cha, and Jongoh Park; Development

of Biomedical Microrobot for Intravascular

Therapy; International Journal of Advanced Robotic

Systems, Vol. 7, No. 1 (2010).

Zoltán Nagy, Raymond Oung, Jake J. Abbott, and

Bradley J. Nelson; Experimental Investigation of

Magnetic Self-Assembly for Swallowable Modular

Robots; IEEE/RSJ International Conference on Intelligent

Robots and Systems; 2008.

Bruce R. Donald, Christopher G. Levey, Igor

Paprotny, and Daniela Rus; Simultaneous Control

of Multiple MEMS Microrobots; Springer-Verlag

Berlin Heidelberg 2010.

Michel Wautelet; Scaling laws in the macro-, microand

nanoworlds; European Journal of Physics, Eur.

J. Phys. 22 (2001) 601–611.

E. M. Purcell; Life at Low Reynolds Number; Harvard

University, Cambridge, Massachusetts; 1976.

Jake J. Abbott, Zoltán Nagy, Felix Beyeler, and

Bradley J. Nelson; Robotics in the Small; IEEE Robotics

& Automation Magazine; 2007

Chytra Pawashe, Steven Floyd, and Metin Sitti;

Multiple magnetic microrobot control using electrostatic

anchoring; Applied Physics Letters 94, 2009.

Gwangjun Go, Hyunchul Choi, Semi Jeong, Cheong

Lee, Bang Ju Park, Seong Young Ko, Jong-Oh Park,

Sukho Park; Position-based magnetic field control

for an electromagnetic actuated microrobot system;

Sensors and Actuators A 205 (2014) 215–223.

Villangca, Mark Jayson; Palima, Darwin; Banas,

Andrew Rafael; Glückstad, Jesper; Light-driven

micro-tool equipped with a syringe function; Light:

Science & Applications; 2016.

Fumihito Arai, Toshiaki Endo, Ryuji Yamuchi, Toshio

Fukuda; 3D 6DOF Manipulation of Micro-object

Using Laser Trapped Microtool; Proceedings of the

IEEE International Conference on Robotics

and Automation; 2006.

Kathrin E. Peyer, Li Zhang and Bradley J. Nelson;

Bio-inspired magnetic swimming microrobots for

biomedical applications; Nanoscale, 2013, 5, 1259.

Li Zhang, Jake J. Abbott, Lixin Dong, Kathrin E.

Peyer, Bradley E. Kratochvil, Haixin Zhang, Christos

Bergeles, and Bradley J. Nelson; Characterizing the

Swimming Properties of Artificial Bacterial Flagella;

Nano Letters, 2009 Vol. 9, No. 10, 3663-3667.

K. Berk Yesin, Philipp Exner, Karl Vollmers, and Bradley

J. Nelson; Design and Control of In-Vivo Magnetic

Microrobots; Springer-Verlag Berlin Heidelberg 2005.

Orphée Cugat, Jérôme Delamare, and Gilbert Reyne;

Magnetic Micro-Actuators and Systems (Magmas);

IEEE Transactions on Magnetics, vol. 39, No. 5, 2003.

Michael P. Kummer,, Jake J. Abbott, Bradley E.

Kratochvil, Ruedi Borer, Ali Sengul and Bradley J.

Nelson; OctoMag: An Electromagnetic System for

-DOF Wireless Micromanipulation; IEEE Transactions

on Robotics, Vol. 26, No. 6, 2010.

Eric Diller, Joshua Giltinan, Guo Zhan Lum, Zhou

Ye, and Metin Sitti; Six-Degrees-of-Freedom Remote

Actuation of Magnetic Microrobots; SAGE Journals,

Vol 35, Issue 1-3, 2016.

Semi Jeong, Hyunchul Choi, Seong Young Ko,

Jong-Oh Park, and Sukho Park; Remote Controlled

Micro-robots using Electromagnetic Actuation

(EMA) Systems; The Fourth IEEE RAS/EMBS International

Conference on Biomedical Robotics and

Biomechatronics; 2012.

Hyunchul Choi, Kyoungrae Cha, Jongho Choi, Semi

Jeong, Seungmun Jeon, Gunhee Jang, Jong-oh Park,

Sukho Park; EMA system with gradient and uniform

saddle coils for 3D locomotion of microrobot;

Sensors and Actuators A 163 (2010) 410–417.

Sung Jun Park, Seung-Hwan Park, Sunghoon Cho,

Deok-Mi Kim, Yeonkyung Lee, Seong Young Ko,

Yeongjin Hong, Hyon E. Choy, Jung-Joon Min,

Jong-Oh Park & Sukho Park; New paradigm for

tumor theranostic methodology using bacteriabased

microrobot; Nature Scientific Reports; 2013

Castillo cesar, Cirugía de mínima invasividad 2013;

Disponible en: http://castillodelossantos.com; ;

[Accedido: 20-may-2018]

Descargas

Publicado

2019-02-03