Remediation of mercury-contaminated sediments through the use of l-cysteine.

Authors

  • Andrés Felipe Acosta Rodriguez Universidad de Manizales
  • Walter Murillo Arango Universidad de Manizales
  • Scott Neese Universidad de Manizales

Keywords:

Mercury, sediments, L-Cysteine, nonmobile mercury, remediation.

Abstract

Mercury is a toxic heavy metal that has the ability to bioaccumulate and biomagnify when released into the environment; Due to its misuse in Colombia, currently this pollutant threatens entire ecosystems and represents a public health problem for various regions of the country. As an alternative solution, a chelating agent was used to stimulate the conversion of mobile-toxic mercury to non-mobile species, for which the South River, located in Waynesboro, VA, USA is used as a sediment model; the samples were subjected to a remediation process using L-Cysteine, an amino acid known to be a chelating agent for heavy metals through its thiol group; Additionally, a commercial solution called “MERCON X” typically used as a decontaminant and suppressor of mercury vapors was utilized in another sediment sample. After the remediation process, the increase in non-mobile mercury species was observed in the sample treated with L-Cysteine, which makes the amino acid a possible low-cost alternative for the remediation of sediments contaminated with mercury.

Downloads

Download data is not yet available.

Author Biographies

Andrés Felipe Acosta Rodriguez, Universidad de Manizales

Universidad de Manizales 

Walter Murillo Arango, Universidad de Manizales

Universidad de Manizales 

Scott Neese, Universidad de Manizales

Universidad de Manizales

References

Bansal, M., Ram, B., Chauhan, G. S., & Kaushik, A. (2018). L-Cysteine functionalized bagasse cellulose nanofibers for mercury(II) ions adsorption. International Journal of Biological Macromolecules, 112, 728–736. https://doi.org/10.1016/j. ijbiomac.2018.01.206

Barone, J. R., Dangaran, K., & Schmidt, W. F. (2006). Blends of cysteine-containing proteins. Journal of Agricultural and Food Chemistry, 54(15), 5393– 5399. https://doi.org/10.1021/jf053238l

Chang, L. W., & Tjalkens, R. B. (2010). Neurotoxicology of Metals. In Comprehensive Toxicology, Second Edition ( Vol. 13, pp. 483–497). Elsevier Inc. https://doi.org/10.1016/B978-0-08-046884- 6.01329-4

Environmental Protection Agency. (2007). METHOD 7471B. https://www.epa.gov/sites/production/ files/2015-12/documents/7471b.pdf

Environmental Protection Agency, U. (1994). EPA Method 7470A (SW-846): Mercury in Liquid Wastes (Manual Cold-Vapor Technique). https://www.epa. gov/sites/production/files/2015-07/documents/ epa-7470a.pdf

Fernández-Martínez, R., Loredo, J., Ordóñez, A., & Rucandio, M. I. (2006). Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain). Environmental Pollution, 142, 217–226. https://doi.org/10.1016/j. envpol.2005.10.034

Gong, Y., Huang, · Yao, Wang, · Mengxia, Liu, F., & Zhang, · Tong. (2019). Application of Iron-Based Materials for Remediation of Mercury in Water and Soil. Bulletin of Environmental Contamination and Toxicology, 102, 721–729. https://doi. org/10.1007/s00128-019-02559-4

Gorder, G. (2019, December 20). Contaminación con mercurio de minería ilegal afecta a indígenas de Colombia. https://es.insightcrime.org/noticias/ noticias-del-dia/contaminacion-con-mercurio-demineria-ilegal-afecta-a-indigenas-de-colombia/

Han, Y., Kingston, H. M., Boylan, H. M., Rahman, G. M. M., Shah, S., Richter, R. C., Link, D. D., & Bhandari, S. (2003). Speciation of mercury in soil and sediment by selective solvent and acid extraction. Analytical and Bioanalytical Chemistry, 375(3), 428–436. https://doi.org/10.1007/s00216-002- 1701-4

Issaro, N., Abi-Ghanem, C., & Bermond, A. (2009). Fractionation studies of mercury in soils and sediments: A review of the chemical reagents used for mercury extraction. Analytica Chimica Acta, 631, 1–12. https://doi.org/10.1016/j.aca.2008.10.020

Jagtap, R. (2011). Measurement of methyl mercury (I) and mercury (II) in fish tissues and sediments by HPLC-ICPMS and HPLC-HGMS (pp. 49–55).

Jagtap, R., Krikowa, F., Maher, W., Foster, S., & Ellwood, M. (2011). Measurement of methyl mercury (I) and mercury (II) in fish tissues and sediments by HPLC-ICPMS and HPLC-HGAAS. Talanta, 85(1), 49–55. https://doi.org/10.1016/j. talanta.2011.03.022

Joshi, D., Mittal, D. K., Shukla, S., Srivastav, A. K., & Srivastav, S. K. (2014). N-acetyl cysteine and selenium protects mercuric chloride-induced oxidative stress and antioxidant defense system in liver and kidney of rats: A histopathological approach. Journal of Trace Elements in Medicine and Biology, 28(2), 218–226. https://doi.org/10.1016/j. jtemb.2013.12.006

Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97. https://doi.org/10.1007/ BF02472006

Matlock, M. M., Henke, K. R., & Atwood, D. A. (2002). Effectiveness of commercial reagents for heavy metal removal from water with new insights for future chelate designs. Journal of Hazardous Materials, 92(2), 129–142. https://doi.org/10.1016/ S0304-3894(01)00389-2

Matlock, M. M., Howerton, B. S., Aelstyn, M. Van, Henke, K. R., & Atwood, D. A. (2003). Soft metal preferences of 1,3-benzenediamidoethanethiol. Water Research, 37(3), 579–584. https://doi. org/10.1016/S0043-1354(02)00279-8

MINSALUD, & Instituto Nacional de Salud. (2018). EVALUACION DEL GRADO DE CONTAMINACIÓN POR MERCURIO Y OTRAS SUSTANCIAS TÓXICAS, Y SU AFECTACIÓN EN LA SALUD HUMANA EN LAS POBLACIONES DE LA CUENCA DEL RIO ATRATO, COMO CONSECUENCIA DE LAS ACTIVIDADES DE MINERÍA. https://www.minsalud.gov.co/sites/rid/ Lists/BibliotecaDigital/RIDE/VS/PP/SA/protocolosentencia-t622-vcolciencias.pdf

Montoya Chica, D., & Escallón Wey, C. (2017, August 16). Colombia aún no hace parte del Convenio de Minamata que busca eliminar el mercurio | WWF. WWF. https://www.wwf.org.co/?308690/Colombiaaun-no-hace-parte-del-Convenio-Minamata

Nriagu, J. O. (1979). Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere . In Nature ( Vol. 279, Issue 5712, pp. 409–411). Nature Publishing Group. https://doi. org/10.1038/279409a0

Ohio Lumex. (2020). Portable Mercury Vapor Analyzer RA-915M | USA | Ohio Lumex. https:// www.ohiolumex.com/mercury-vapor-analyzer915m

Randall, P. M., & Chattopadhyay, S. (2013). Mercury contaminated sediment sites-An evaluation of remedial options. Environmental Research, 125, 131–149. https://doi.org/10.1016/j. envres.2013.01.007

South River Science Team. (2001). Who We Are | South River Science Team | Waynesboro, VA. https://southriverscienceteam.org/who-weare/#historic-timeline

Published

2018-06-02