Consideraciones para el Análisis de Pavimento Flexible y Rígido Mediante el Elementos Finitos con Aplicaciones de Abaqus

Autores/as

  • JHON VLADIMIR ACEVEDO PEREZ Corporación Universitaria Minuto de Dios
  • Sergio Arturo Vargas Diaz Corporación Universitaria Minuto de Dios

DOI:

https://doi.org/10.18270/rt.v18i2.4091

Palabras clave:

Método de Elementos Finitos (MEF), Viscoelasticidad, Concrete Smeared Cracking (CSC), Concrete Damaged Plasticity (CDP), Pavimentos, Abaqus

Resumen

El método de elementos finitos (MEF) permite analizar estructuras de pavimento en condiciones aproximadas a las de servicio, simulando condiciones de carga y propiedades semejantes a las reales, con el fin de predecir las respuestas mecánicas de la estructura. Este método considera características aproximadas de campo como la geometría y discontinuidades de la estructura, cargas, condiciones de frontera y modelos constitutivos realistas de materiales. En este estudio se presenta la aplicación de estas teorías en la modelación de estructuras de pavimento rígido y flexible, para lo cual Abaqus incluye un módulo de análisis viscoelástico. La teoría de la viscoelasticidad lineal es ampliamente utilizada para caracterizar mezclas asfálticas en virtud de su capacidad de describir la respuesta del material, en este estudio se dan pautas para la obtención de parámetros viscoelásticos expresados en Series de Prony, asimismo, se establece la aplicabilidad de los modelos concrete smeared cracking (CSC) y concrete damaged plasticity (CDP) para determinar la respuesta no elástica y post agrietamiento del concreto. Por otra parte, son presentadas consideraciones para definir la geometría de una estructura de pavimento, el área de contacto llanta-pavimento, las cargas (esfuerzos de contacto), y mallado del modelo.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

JHON VLADIMIR ACEVEDO PEREZ , Corporación Universitaria Minuto de Dios

Ingeniero Civil de la Universidad Católica de Colombia (2004) e Ingeniero Topográfico (2004),
Especialista en Diseño de Vías Urbanas, tránsito y Transporte (2011) y M. Sc. (c) en Ingeniería
Civil con Énfasis en Construcción y Hábitat de la Universidad Distrital Francisco José de Caldas.
Profesor universitario en pregrado y posgrado en varias universidades de Bogotá, desde 2013.
Intereses de Investigación en infraestructura vial sostenible. Consultor en pavimentos, diseño
geométrico de vías, tránsito y transporte.

Sergio Arturo Vargas Diaz, Corporación Universitaria Minuto de Dios

Ingeniero Civil de la Corporación Universitaria Minuto de Dios, (2021). Asistente de laboratorio
especializado para el programa de Ingeniería Civil en la Corporación Universitaria Minuto de
Dios, Sede Principal. Intereses de investigación en análisis de pavimentos, reología y método
de elementos finitos.

Referencias bibliográficas

Y.-H. Cho, F. McCullough, and J. Weissmann, “Considerations on Finite-Element Method Application in Pavement Structural Analysis,” Transp. Res. Rec. J. Transp. Res. Board, vol. 1539, no. 1, pp. 96–101, Jan. 1996, doi: 10.1177/0361198196153900113.

P. Leiva-Padilla, L. Loría-Salazar, and A. Navas-Carro, “Comparación entre modelación de respuestas de pavimentos flexibles con análisis de multicapa elástica y elemento finito,” in XVI CILA-Congreso Ibero-Latinoamericano del Asfalto, 2011, pp. 3–14, [Online]. Available: https://www.lanamme.ucr. ac.cr/repositorio/handle/50625112500/716.

Applied Research Associates Inc., “Guide for mechanistic- empirical design of new and rehabilitated pavement structures Appendix RR: Finite element procedures for flexible pavement analysis,” Washington D.C., 2004.

P. J. Yoo and I. L. Al-Qadi, “Effect of Transient Dynamic Loading on Flexible Pavements,” Transp. Res. Rec. J. Transp. Res. Board, vol. 1990, no. 1, pp. 129–140, Jan. 2007, doi: 10.3141/1990-15.

O. E. Gungor, I. L. Al-Qadi, A. Gamez, and J. A. Hernandez, “Development of Adjustment Factors for MEPDG Pavement Responses Utilizing Finite- Element Analysis,” J. Transp. Eng. Part A Syst., vol. 143, no. 7, p. 04017022, Jul. 2017, doi: 10.1061/ JTEPBS.0000040.

Elsevier B.V., “Scopus preview - Scopus - Welcome to Scopus,” Welcome to Scopus Preview, 2004. https://www.scopus.com/home.uri (accessed Oct. 26, 2020). [7] SIMULIA Abaqus, “Abaqus Analysis User´s Guide,” 2016. [Online]. Available: http://130.149.89.49:2080/ v2016/books/usb/default.htm.

R. K. Abu Al-Rub, M. K. Darabi, C.-W. Huang, E. A. Masad, and D. N. Little, “Comparing finite element and constitutive modelling techniques for predicting rutting of asphalt pavements,” Int. J. Pavement Eng., vol. 13, no. 4, pp. 322–338, 2012, doi: 10.1080/10298436.2011.566613.

M. Elseifi, J. Baek, and N. Dhakal, “Review of modelling crack initiation and propagation in flexible pavements using the finite element method,” Int. J. Pavement Eng., vol. 19, no. 3, pp. 251–263, Mar. 2018, doi: 10.1080/10298436.2017.1345555.

F. Reyes, Diseño racional de pavimentos. CEJA, 2003.

E. Simonsen and U. Isacsson, “Soil behavior during freezing and thawing using variable and constant confining pressure triaxial tests,” Can. Geotech. J., vol. 38, no. 4, pp. 863–875, Aug. 2001, doi: 10.1139/t01-007.

M. Kim, E. Tutumluer, and J. Kwon, “Nonlinear pavement foundation modeling for three-dimensional finite-element analysis of flexible pavements,” Int. J. Geomech., vol. 9, no. 5, pp. 195–208, Oct. 2009, doi: 10.1061/(ASCE)1532-3641(2009)9:5(195).

S. Katicha, “Analysis of Hot-Mix Asphalt ( HMA ) Linear Viscoelastic and Bimodular Properties Using Uniaxial Compression and Indirect Tension ( IDT ) Tests,” Virginia Tech, 2007. [14] S. Deepa, U. Saravanan, and J. Murali, “On measurement of dynamic modulus for bituminous mixtures,” Int. J. Pavement Eng., vol. 20, no. 9, pp. 1073–1089, Sep. 2019, doi: 10.1080/10298436.2017.1380809.

E. J. Barbero, “Viscoelasticity,” in Finite element analysis of composite materials using Abaqus, 1th ed., London: CRC Press, 2008, pp. 249–280.

Y. Huang, Pavement analysis and design, 2th ed. Kentucky: Pearson Prentice Hall, 2004. [17] Y. Ma, H. Kim, I. Kim, and Y.-H. Cho, “Development of a mechanistic-empirical prediction model for joint spalling distress in concrete pavements,” Constr. Build. Mater., vol. 44, pp. 276–286, Jul. 2013, doi: 10.1016/j.conbuildmat.2013.03.029.

J. Baek, “Modeling reflective cracking development in hot-mix asphalt overlays and quantification of control techniques,” University of Illinois, 2010.

S. Katicha, G. W. Flintsch, A. Loulizi, and L. Wang, “Conversion of Testing Frequency to Loading Time Applied to the Mechanistic-Empirical Pavement Design Guide,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2087, no. 1, pp. 99–108, Jan. 2008, doi: 10.3141/2087-11.

AASHTO T 342-11, “Standard Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures,” 2019. [Online]. Available: https://www.techstreet.com/standards/aashto-t- 342-11-2019?product_id=1817547.

N. H. Gibson, C. W. Schwartz, R. A. Schapery, and M. W. Witczak, “Viscoelastic, Viscoplastic, and Damage Modeling of Asphalt Concrete in Unconfined Compression,” Transp. Res. Rec. J. Transp. Res. Board, vol. 1860, no. 1, pp. 3–15, Jan. 2003, doi: 10.3141/1860-01.

J. Ling, F. Wei, H. Zhao, Y. Tian, B. Han, and Z. Chen, “Analysis of airfield composite pavement responses using full-scale accelerated pavement testing and finite element method,” Constr. Build. Mater., vol. 212, pp. 596–606, Jul. 2019, doi: 10.1016/j. conbuildmat.2019.03.336. [23] S. W. Park and R. A. Schapery, “Methods of interconversion between linear viscoelastic material functions. Part I—a numerical method based on Prony series,” Int. J. Solids Struct., vol. 36, no. 11, pp. 1653–1675, Apr. 1999, doi: 10.1016/S0020- 7683(98)00055-9.

J. Baek and I. L. Al-Qadi, “Mechanism of overlay reinforcement to retard reflective cracking under moving vehicular loading,” in Pavement Cracking Mechanisms, Modeling, Detection, Testing and Case Histories, 2008, pp. 563–573, doi: 10.1201/9780203882191.

O. E. Gungor, I. L. Al-Qadi, A. Gamez, and J. A. Hernandez, “In-Situ Validation of Three-Dimensional Pavement Finite Element Models,” in The Roles of Accelerated Pavement Testing in Pave-ment Sustainability, Sep. 2016, pp. 145–159, doi: 10.1007/978-3-319-42797-3_10.

J. Baek and I. L. Al-Qadi, “Finite Element Modeling of Reflective Cracking under Moving Vehicular Loading: Investigation of the Mechanism of Reflective Cracking in Hot-Mix Asphalt Overlays Reinforced with Interlayer Systems,” in Airfield and Highway Pavements, Oct. 2008, vol. 329, pp. 74–85, doi: 10.1061/41005(329)7.

S. Arrieta, J. Diani, and P. Gilormini, “Experimental characterization and thermoviscoelastic modeling of strain and stress recoveries of an amorphous polymer network,” Mech. Mater., vol. 68, pp. 95–103, Jan. 2014, doi: 10.1016/j.mechmat.2013.08.008.

S. Aarabi and S. A. Tabatabaei, “Viscoelastic analysis of thickness variation of asphaltic pavements under repeated loading using finite element method,” Int. J. Pavement Eng., pp. 1–12, Apr. 2018, doi: 10.1080/10298436.2018.1450504.

M. Ling, Y. Deng, Y. Zhang, X. Luo, and R. L. Lytton, “Evaluation of complex Poisson’s ratio of aged asphalt field cores using direct tension test and finite element simulation,” Constr. Build. Mater., vol. 261, 2020, doi: 10.1016/j.conbuildmat.2020.120329.

SIMULIA Abaqus, “Abaqus Theoy Guide,” 2016. [Online]. Available: http://130.149.89.49:2080/ v2016/books/stm/default.htm.

T. Dalrymple, “Calibration of Prony series from DMA test data,” 2014. [Online]. Available: https:// r1132100503382-eu1-3dswym.3dexperience.3ds. com/#community:39/post:3684.

M. Saleh and M. Ghorban, “Finite Element Modeling of Permanent Deformation in the Loaded Wheel Tracker Test,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2641, no. 1, pp. 94–102, Jan. 2017, doi: 10.3141/2641-12.

J. Kong and J.-Y. Yuan, “Application of linear viscoelastic differential constitutive equation in ABAQUS,” in 2010 International Conference On Computer Design and Applications, Jun. 2010, vol. 5, pp. V5-152-V5-156, doi: 10.1109/ ICCDA.2010.5541456.

C. Si et al., “Dynamic Response Analysis of Rutting Resistance Performance of High Modulus Asphalt Concrete Pavement,” Appl. Sci., vol. 8, no. 12, p. 2701, Dec. 2018, doi: 10.3390/app8122701.

R. K. Abu Al-Rub, E. A. Masad, and C.-W. Huang, “Improving the Sustainability of Asphalt Pavements through Developing a Predictive Model with Fundamental Material Properties,” Texas, 2009. [Online]. Available: http://swutc.tamu.edu/publications/ technicalreports/476660-00007-1.pdf.

H. Ban, S. Im, Y.-R. Kim, and J.-S. Jung, “Laboratory tests and finite element simulations to model thermally induced reflective cracking of composite pavements,” Int. J. Pavement Eng., vol. 19, no. 3, pp. 220–230, Mar. 2018, doi: 10.1080/10298436.2017.1279491.

J. Kim and K. Hjelmstad, “Three-Dimensional Finite Element Analysis of Doweled Joints for Airport Pavements,” Transp. Res. Rec. J. Transp. Res. Board, vol. 1853, no. 1, pp. 100–109, Jan. 2003, doi: 10.3141/1853-12.

M. Y. Riad, S. N. Shoukry, G. W. William, and M. R. Fahmy, “Effect of skewed joints on the performance of jointed concrete pavement through 3D dynamic finite element analysis,” Int. J. Pavement Eng., vol. 10, no. 4, pp. 251–263, Aug. 2009, doi: 10.1080/10298430701771783.

Y. Seo and S.-M. Kim, “Longitudinal cracking at transverse joints caused by dowel bars in Jointed Concrete Pavements,” KSCE J. Civ. Eng., vol. 17, no. 2, pp. 395–402, Mar. 2013, doi: 10.1007/s12205-013- 2047-5.

Y. Li, G. Song, and J. Cai, “Mechanical Response Analysis of Airport Flexible Pavement Above Underground Infrastructure Under Moving Wheel Load,” Geotech. Geol. Eng., 2017, doi: 10.1007/s10706-017- 0242-8.

S. Helwany, “Elasticity and Plasticity,” in Applied Soil Mechanics: With ABAQUS Applications, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007, pp. 21–82.

R. Goorchi, M. Mohtadinia, and A. Jafari, “Numerical modeling of reinforced concrete structures with concrete damage plasticity,” in 10th International Congress on Civil Engineering, 2015, vol. 10, no. January 2018, pp. 1–8, Accessed: Dec. 16, 2019. [Online]. Available: https:// en.civilica.com/Paper-ICCE10-ICCE10_0956=Numerical- Modeling-of-Reinforced-Concrete-Structures-with- Concrete-Damage-Plasticity.html.

N. Jafarifar, K. Pilakoutas, H. Angelakopoulos, and T. Bennett, “Post-cracking tensile behaviour of steel-fibre-reinforced roller-compacted-concrete for FE modelling and design purposes,” Mater. Construcción, vol. 67, no. 326, p. 122, Mar. 2017, doi: 10.3989/mc.2017.06716. [44] M. Keymanesh, M. Mirshekarian Babaki, N. Shahriari, and A. Pirhadi, “Evaluating the Performance of Dowel in PCC Pavement of Roads using ABAQUS Finite Element Software,” Int. J. Transp. Eng., vol. 5, no. 4, pp. 349–365, Apr. 2018, doi: 10.22119/ijte.2018.47765.

A. E. Abu, G. M. Hekal, and E. M. Salah, “Modeling of Dowel Jointed Rigid Airfield Pavement under Thermal Gradients and Dynamic Loads,” Civ. Eng. J., vol. 2, no. 2, pp. 38–51, Feb. 2016, doi: 10.28991/ cej-2016-00000011.

D. Fei, Y. Yan, C. Liangcai, T. Yaohong, and W. Xuancang, “Mechanical Response of Typical Cement Concrete Pavements under Impact Loading,” Math. Probl. Eng., vol. 2017, pp. 1–13, 2017, doi: 10.1155/2017/2050285.

Y. Tao and J. F. Chen, “Concrete Damage Plasticity Model for Modeling FRP-to-Concrete Bond Behavior,” J. Compos. Constr., vol. 19, no. 1, p. 04014026, Feb. 2015, doi: 10.1061/(ASCE)CC.1943- 5614.0000482.

V. Birtel and P. Mark, “Parameterised Finite Element Modelling of RC Beam Shear Failure,” in 2006 ABAQUS Users’ Conference, 2006, pp. 95–108, [Online]. Available: https://www.researchgate.net/ publication/266411260_Parameterised_Finite_ Element_Modelling_of_RC_Beam_Shear_Failure.

Y. Sümer and M. Akta, “Defining parameters for concrete damage plasticity model,” Chall. J. Struct. Mech., vol. 1, no. 3, pp. 149–155, 2015, doi: 10.20528/cjsmec.2015.07.023.

F. Lopez-Almansa, B. Alfarah, and S. Oller, “Numerical simulation of RC frame testing with damaged plasticity model comparison with simplified models,” in 2nd European Conference on Earthquake Engineering and Seismology, 2014, no. November 2015, pp. 1–12, doi: 10.13140/2.1.3457.2169.

L. P. Priddy, J. D. Doyle, G. W. Flintsch, D. W. Pittman, and G. L. Anderton, “Three-dimensional modelling of precast concrete pavement repair joints,” Mag. Concr. Res., vol. 67, no. 10, pp. 513–522, May 2015, doi: 10.1680/macr.14.00278.

V. Sadeghi and S. Hesami, “Investigation of load transfer efficiency in jointed plain concrete pavements ( JPCP) using FEM,” Int. J. Pavement Res. Technol., vol. 11, no. 3, pp. 245–252, May 2018, doi: 10.1016/j.ijprt.2017.10.001.

S. V.Chaudhari and M. A. Chakrabarti, “Modeling of Concrete for Nonlinear Analysis using Finite Element Code ABAQUS,” Int. J. Comput. Appl., vol. 44, no. 7, pp. 14–18, 2012, doi: 10.5120/6274-8437.

A. El-Desouky, A. Mostafa, S. Easa, and A. O. Abd El Halim, “Modeling shear properties of airport asphalt mixes using different test methods,” in Pavement Cracking Mechanisms, Modeling, Detection, Testing and Case Histories, Jul. 2008, pp. 357–365, doi: 10.1201/9780203882191.

J. A. Hernandez, A. Gamez, I. L. Al-Qadi, and M. De Beer, “Analytical Approach for Predicting Three-Dimensional Tire–Pavement Contact Load,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2456, no. 1, pp. 75–84, Jan. 2014, doi: 10.3141/2456-08. [56] X. Jiang, C. Zeng, X. Gao, Z. Liu, and Y. Qiu, “3D FEM analysis of flexible base asphalt pavement structure under non-uniform tyre contact pressure,” Int. J. Pavement Eng., vol. 20, no. 9, pp. 999–1011, Sep. 2017, doi: 10.1080/10298436.2017.1380803.

Y. Sun et al., “Viscoelastic Mechanical Responses of HMAP under Moving Load,” Materials (Basel)., vol. 11, no. 12, p. 2490, Dec. 2018, doi: 10.3390/ ma11122490.

Y. J. Lu, L. J. Wang, Q. Yang, and J. Y. Ren, “Analysis of Asphalt Pavement Mechanical Behaviour by Using a Tire-Pavement Coupling Model,” Int. J. Simul. Model., vol. 17, no. 2, pp. 245–256, Jun. 2018, doi: 10.2507/IJSIMM17(2)423.

L. Li et al., “Investigation of Prony series model related asphalt mixture properties under different confining pressures,” Constr. Build. Mater., vol. 166, pp. 147–157, Mar. 2018, doi: 10.1016/j. conbuildmat.2018.01.120.

Descargas

Publicado

2022-07-18

Número

Sección

Artículos