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Abstract

The actual information concerning the geometric structure of the world, i.e. the 
structure of spacetime that is conveyed to us through the theory of general relativity, 
is discussed. Different proposals related to several philosophical schools (coven-
tionalism, empiricism, etc.) are dealt with. The conclusion —still open to further 
debate— seems to point to the fact that although space-time has an objective exis-
tence, its metric shows a relational or non-absolute character.
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Resumen

En este artículo se discute la información concerniente a la estructura geométrica 
del universo —es decir, la estructura del espacio-tiempo— que conocemos prin-
cipalmente a través de la teoría de la relatividad general. Se consideran por ello las 
distintas propuestas planteadas por diferentes escuelas filosóficas (convenciona-
lismo, empirismo, etc.). La conclusión —abierta a posteriores controversias— parece 
señalar al hecho de que aun cuando el espacio-tiempo posee una existencia objetiva, 
sus propiedades métricas tienen un carácter relacional. 
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Introduction

In what sense are we being informed about the structure of physical reality 
when we are told that spacetime is a pseudo-Riemannian manifold of variable 
curvature? It can hardly be overemphasized that the question is a deep one 
whose treatment may lapse into unedifying obscurity when one is less than 
completely clear as to its precise meaning. It is significant that expert opinion 
on the mutual relevance of general relativity and geometry ranges all the way 
from J. A. Wheeler’s celebrated slogan, «Physics is geometry», to the no less 
remarkable comment of J. L. Anderson that “[…] Einstein succeeded actually 
in eliminating geometry from the space-time description of physical systems by 
letting the gravitational field take over all its functions” (Anderson 1967, 329). 
When two eminent authorities offer such apparently diverse interpretations of so 
fundamental an issue one may suspect that the problem cannot be resolved by 
simple recourse to the facts of science but requires a serious conceptual analysis. 

General relativity has been characterized as the geometrization of physics. 
Unfortunately, this familiar dictum is more dazzling than illuminating. It is 
suggestive of the particularly close fit that obtains between physical and geometric 
model. The latter is due to the contingent fact of the equivalence of gravitational 
and inertial mass, which is the basis for the geodesic hypothesis. In brief, general 
relativity, from the standpoint of applied mathematics, is the coordination of a 
physical model of the gravitational interaction as determined by matter with a 
mathematical model of a four-dimensional pseudo-Riemannian manifold of 
variable curvature such that ideal gravitational test particIes traverse timelike 
geodesics and photons traverse null geodesics. The success of this coordination, 
i.e. the closeness of the fit, possibly exceeds that of any other scientific theory. 
Consequently, the geometric machinery is a particularly apt instrument for the 
prediction of physical consequences. Nevertheless, one cannot simply read the 
physics from the geometric formalism. For example, the spacelike geodesics play 
no less a mathematical role than the timelike ones. Accordingly, the impossibility 
of spacelike motion does not follow from the geometry but has to be inserted as a 
physical hypothesis. General relativity vindicates Pythagoras no more than Kant. 

Geometric Conventionalism 

Riemann’s generalization of Euclidean geometry may be interpreted as 
showing that a system of metric geometry is determined by the choice of 
metric function gik dxidxk, of which there are in principie infinitely many. 
Equivalently, it may be interpreted as the claim that a system of geometry is 
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determined by a standard of congruence. To say that a line segment AB is 
congruent to a line segment CD is to affirm that a rigid rod which coincides 
with AB will, after transportation, also coincide with CD. However, one’s 
mathematical predictions as to the partitioning of point pairs into equiva-
lence classes of congruent intervals depend on the choice of gik. Moreover, 
the standard of rigidity would itself appear to presuppose a standard of 
congruence. Given that AB is congruent to CD according to the choice of gik, 
a rod would be regarded as rigid if it were found to undergo no deformation 
when transported from the one to the other. Thus, it appears that one simply 
stipulates which line segments are congruent, with different stipulations gene-
ralIy giving rise to different geometries. 

One of the most celebrated protagonists of the philosophical crisis 
engendered by the new geometries at the end of the XIXth century was 
Jules-Henri Poincaré (1854-1912). Briefly, the problem confronting Poin-
caré is that geometric assertions are conventions. However, Poincaré’s 
doctrine of conventionalism has sometimes been misrepresented in the lite-
rature of philosophy. While it is true that he argued that the propositions 
of geometry have the logical character of conventions or definitions, which 
can never be overthrown on experimental grounds, he goes to considerable 
lengths to account for our geometrical beliefs in terms of their experiential 
origins. His position is to the effect that although experience can never 
impose a particular system of metric geometry, the content of experience 
is such that one geometric system will be adopted as the most natural one 
for the expression of physical laws, on the grounds of descriptive simplicity 
and convenience. Moreover, experience is such that Euclidean geometry, 
although conventional, is the natural choice (Poincaré 1952; 1956; 1963). 

In the final analysis, for Poincaré, the space of pure mathematics is comple-
tely amorphous. It makes no sense, in his view, to ascribe congruence relations 
to the mathematical continuum. Claims about the structure of space which 
are ostensibly factual are, in fact, assertions not about space in isolation but 
pertain to the combination of space and the patterns of phenomena, espe-
cially to the behaviour of our measuring instruments. Physics and geometry 
are inseparable. An experimental result which seems to confute the one may 
always be accounted for by a compensating adjustment in the other

Under these conditions, does space possess geometric properties inde-
pendent of the instruments used to measure it? It can, we have said, 
undergo any deformation whatever without our being made aware of it if 
our instruments undergo the same deformation. In reality, space is there-
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fore amorphous, a flaccid form, without rigidity, which is adaptable to 
everything: it has no properties of its own. To geometrize is to study the 
properties of our instruments, that is, of solid bodies (Poincaré 1963, 17).

Geometric Empiricism 

Since the advent ofthe theory of relativity, its most painstaking philoso-
phic interpreter in the first half of the century was Hans Reichenbach. He 
wrote several books and papers on the content and epistemology of relativity 
theory. Reichenbach once illustrated an aspect of his philosophy of geometry 
by means of a well-known parable about a curved line projected onto a flat 
one. A scientific theory, he would argue, unlike a system of pure mathematics, 
requires that its basic concepts be related to the physical world. More precisely, 
such a theory stands in need of what he calls coordinative definitions. Unlike 
the usual dictionary definition, a coordinative definition does not relate a new 
concept (definiendum) to antecedently understood concepts but establishes a 
relationship between a concept and a thing. For example, the coordination of 
the concept of unit length with the standard platinum metre bar in Paris is an 
instance of a coordinative definition. What is more to the point in the present 
context is that if geometry is to acquire the status of a system of statements 
about the world, it too must be augmented by such a semantic interpretation 
(Reichenbach 1958). Such notions as «congruence» and «straight line» must 
be linked to the physical world by means of coordinative definitions which 
typically involve material measuring rods and lightrays. 

Suppose that the measurement of a sufficiently large triangle had been 
carried out by optical means and revealed an angle-sum of 180.05°. In effect, 
one would have been investigating a triangle whose sides are composed of 
light-rays. Consequently, the outcome of the experiment could be interpreted 
as signifying not that Euclidean geometry is false but that the paths of ligh-
trays are not Euclidean line-segments, being subject to the distorting influence 
of universal forces. What was measured, having curvilinear sides, was simply 
not a Euclidean triangle. In short, one would appear to be saving the geometry 
by modifying the physics in the manner of Poincaré. However, Reichenbach 
would argue that such a procedure fails to constitute a genuine alteration of 
the laws of physics. “The assumption of such forces means merely a change 
in the coordinative definition of congruence” (Reichenbach 1956, 133). So 
Reichenbach now appears to be saying that it is possible to preserve the free 
choice of geometry by resorting to an appropriate semantic reinterpretation. 
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Like most verificationists, Reichenbach would appear to harbour a charac-
teristic distrust of theories, which are, virtually by definition, transempirical. 
It is quite true that theories assert and entail propositions which cannot be 
known with certainty. No responsible theorist would, in fact, claim certainty 
for any theory. However, although theories typically go beyond immediate 
experience, they will always, considered as systematic wholes, be subject to 
the test of experience. In the final analysis, even transempirical concepts must 
indirectly withstand the test of experience. In the case of general relativity, 
the specific parts of the theory that may have to be revised in the light of expe-
rience include those elements which are commonly regarded as geometric. 

In spite of his considerable knowledge of theoretical physics, Reichenbach 
appears to hold a somewhat simplistic view of the methods of experimental 
physics. He conveys the impression of being sceptical, in principie, of the vali-
dity of measuring instruments. It is clearly the case that some measuring rods, 
clocks and similar devices are more reliable than others. The experimental 
physicist, when employing a measuring instrument to test a theory, will place 
reliance on that instrument in virtue of theoretical considerations which are 
independent of the theory which is under investigation. 

Geochronometric Conventionalism 

Geochronometric conventionalism is the name which Grünbaum attaches 
to his own brand of conventionalism, which is distinct from both of the 
versions which we have so far examined. In particular, whereas Reichenbach 
bases his views on epistemic matters, Grünbaum claims his own version of 
geometric conventionalism to have an ontological basis. That is to say, that he 
is able to envisage a world in which geometric conventionalism would be false 
as a matter of ontological fact. 

The crucial feature of Grünbaum’s position is that the thesis of geometric 
conventionalism should be construed neither as an epistemological claim 
nor as a semantic one but as a claim about the very nature of space itself 
(Grünbaum 1973). He draws a distinction between those properties of an 
entity which are intrinsic to it and those which are extrinsic or relational. 
Grünbaum would argue that the metric properties of space are all of the 
extrinsic variety. By this, he has in mind that it is conceivable that space 
might have had a «built-in» metric in a sense in which the natural numbers 
may be said to possess an intrinsic or built-in metric whereby the interval 
between 7 and 3 is objectively equal to that between 18 and 14. He argues 



[36]

Conventionality andRelationality in Relativistic Space-Time 

that there is no counterpart to this natural standard of equality in the case of 
space due to the following considerations. 

In the first place, every spatial interval is continuous. The continuity of 
space entails the impossibility of comparing the magnitude of two such inter-
vals by a process of counting, since all continuous intervals ha ve the same 
cardinality. That is to say, that technically they all contain the same number 
of points, namely, a non-denumerable infinity of them. Continuity is a neces-
sary but not a sufficient condition for the extrinsicality of the spatial metric. 
For example, although the real number system is continuous it is, nevertheless, 
possible to make an objective comparison of the size of two intervals in the 
real number system. This is because the elements of the set of real numbers 
are intrinsically distinct from each other. The real number 6 is greater than 
the real number 2, which is why one may say that the interval from 0 to 6 is 
three times greater than the interval from 0 to 2. On the other hand, there is 
no intrinsic difference among the various points of space. All spatial points, 
or the unit sets which contain them, are qualitatively homogeneous. Thus, in 
virtue of the combination of continuity and homogeneity, there is no intrinsic 
basis for spatial congruence comparisons. That is to say, that space has no 
intrinsic metric. As Grünbaum puts it, space is metrically amorphous. 

On the ground, therefore, of the dual claim that the basis for the ascription 
of equality of length to two line segments is both external and conventional, 
Grünbaum concludes that the choice of a spatial metric must be conven-
tional. It must be emphasized that the significance of Grünbaum’s claim is 
not merely epistemological. It is not to the effect that the true metric of space 
is empirically inaccessible but that space has no true metric: it is metrically 
amorphous! Furthermore, it should not be construed as asserting that space 
is a non-entity or methodological fiction but merely that it is not the sort of 
entity which could possess objective metric properties. 

To emphasize the ontological or factual character of his thesis, Grünbaum 
employs an argument which is derived from Riemann. He contrasts the 
case of continuous physical space with that of a hypothetical space which is 
discrete or granular. In such a space, every interval would comprise a coun-
table number of basic space atoms or quanta. Space, itself, would then be 
disposed to admit of an intrinsic standard of length which would be defined 
as the arithmetic sum of spatial quanta. Space intervals would then be 
compared in the same manner as arithmetic intervals. Grünbaum intended 
the foregoing to serve as an illustration of an intrinsic and factual metric as 
distinct from one which is extrinsic and conventional. However, as several 
critics have remarked, although such a standard of congruence would be in 
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some sense intrinsic, it could stilI be held to be based on the convention 
that all space atoms have the same magnitude. Any attempt to establish that 
fundamental equality by some form of measurement carried out by means 
of an extrinsic standard would presumably deprive the metric of its strictly 
objective character. However, this criticism does not seem to be particularly 
damaging to Grünbaum’s principal thesis.  

 A Critique of Geochronometric Conventionalism 

Despite the enormous critical controversy over Grünbaum’s distinction 
between intrinsic and extrinsic features of the manifold and granting the 
difficulties attendant on a formal characterization of this distinction, I believe 
that its intent is reasonably c1ear. There are properties which a thing may 
possess in its own right and others which it may only possess in relation to 
something else which is external to it. Another way of putting it is simply 
that things possess both absolute and relational properties. Certain properties, 
such as chemical composition, are c1early absolute, whereas others, such as 
«being to the left of» are just as obviously relational (Torretti 1978). 

It makes no sense to claim that space and spacetime are intrinsically curved 
or, for that matter, intrinsicaIly flat. There simply is no basis for attributing a 
«built-in» metric to spacetime any more than there is a basis for endowing it 
with built-in coordinates. Furthermore, it should be obvious that the lack of 
an intrinsic metric for spacetime is precisely the message of general relativity. 
To use the orthodox terminology, the metric of general relativity is not an 
absolute object but a dynamical one. That is to say, that the space-time metric 
is determined by the matter-energy of the universe. The metric and affine 
properties of spacetime are, on this theory, c1early relational.

On the other hand, the argument against geometric conventionalism is that 
the physicist is always eoncerned with the geometry of a physical system of so 
me kind and never with the geometry of pure space (Sklar 1974). To argue, for 
example, that the surface of my desk is Euclidean if the geometry of spaee is 
flat, but curved if the spatial geometry is curved is, in my opinion, to commit 
a methodological fallacy. A differentiable manifold, qua abstract mathematical 
space, is not disposed to accept one affinity more than another. That, however, 
is not to say that an affinely connected manifold is affinely amorphous. 

The applied geometer will be concerned with such physical entities as table 
tops, spheroids such as the earth and, in particular, physical fields such as 
that of gravitation (Cohen & Seeger 1970). He is not directly concerned 
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with investigating the properties of mathematical manifolds. Such proper-
ties are simply decreed or freely chosen. Therein lies the essential truth 
of geometric conventionalism. It does not follow that the structure of a 
physical entity is determined by convention. It is not the case, for example, 
that the gravitational field is metrically amorphous and, hence, accessible to 
conventional metrization. To the extent that gravitational phenomena are 
successfuIly coordinated with a particular metric space, the field itself may 
be said, qua physical manifold, to possess that metric objectively. One may, 
of course, argue that a theory which associates the gravitational field with 
a particular metric space may be abandoned in favour of another theory 
which associates that field with a different metric. 

However, the familiar circumstance of one theory’s being supplanted by 
another should not be construed as evidence favouring conventionalism. The 
latter is not an instance of freely replacing one convention by another but is 
rather a case of one factual conjecture or postulate being replaced by another 
which is deemed to be more accurate. The fact that the metric of a physical 
manifold may not be known with certainty should not be taken to indicate 
that such manifolds lack an objective or determinate metric. The appropriate 
place for conventions is in pure mathematics not in factual science. Indeed, 
one may suspect that geometric conventionalism has been fostered by the all 
too frequent confusion that exists between a physical theory and the mathe-
matical theory in terms of which it is expressed. 

General Relativity and Space-Time Structure 

In line with the general view of applied mathematics, the theory of general rela-
tivity should be interpreted to be essentially an attempt to coordinate a conceptual 
or mathematical entity, namely a pseudo-Riernannian manifold of variable 
curvature and Lorentz signature with a physical process, namely the gravita-
tional interaction (Earman 1970; Earman et ál. 1977). In virtue of the identity 
of gravitational and inertial mass, the motion of a particle under the inftuence of 
a gravitational field may be formally treated as a force-free or «natural» motion. 
The geodesic hypothesis is an immediate consequence. The latter states that the 
trajectory of a gravitational monopole is a geodesic in spacetime.

Various workers in the field of general relativity have proposed that the 
appropriate way to measure the gravitational field is not by means of rods and 
clocks, as suggested by Einstein, but by means of freely falling massive particles 
and photons, which reveal respectively the timelike and null geodesics of the 
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field (Erlich 1976). Grünbaum has argued that such methods should be inter-
preted not realistically but conventionally. His point is that the aforementioned 
geodesics are not to be regarded as constitutive of the gravitational field. Rather, 
it is by human decree that the trajectories of photons and gravitational mono-
poles are associated with geodesics. The rationale of Grünbaum’s argument 
seems to be that the aforementioned probes of the field, like measuring rods, are 
extrinsic standards. Hence, just as it is conventionally decreed that two intervals 
of space which are successively occupied by a measuring rod are congruent, so 
in this instance it is decreed that the spacetime trajectory of a free particle is a 
geodesic. Grünbaum grants that general relativity imposes a definite metric on 
spacetirne but argues that it is to be construed not descriptively but normatively. 
He here uses the epithet «descriptive» in the sense of objective rather than in his 
customary use of it when speaking of descriptive simplicity. 

It would seem that Grünbaum may be guilty, perhaps unknowingly, of a 
misinterpretation of the methodology of general relativity. This misinterpre-
tation probably runs along the following lines. One observes the trajectories 
of massive and massless particles and adopts the convention of treating them 
as timelike and null geodesics, respectively. One then asserts that the gravita-
tional metric is whatever manifold happens to possess that particular geodesic 
structure. This may be shown to be erroneous on at least two counts. 

In the first place, on this view the geodesic hypothesis, which is an essen-
tial ingredient of the theory, would fail to have the status of a physical law 
but would be a mere convention such that the theory as a whole would be 
rendered practically immune to revision. For example, one of the classical 
predictions of general relativity was the bending of starlight in the sun’s gravi-
tational field. Now on the interpretation which I have putatively attributed to 
Grünbaum, this prediction would not have constituted a critical test of the 
theory, since whatever the trajectory of a light-ray might be, that trajectory 
would have been conventionally decreed to be a geodesic. The famous expe-
dition of Eddington in 1919 which was conducted for the purpose of testing 
Einstein’s prediction would therefore have been pointless. What is overlooked 
is that Einstein predicted the path of starlight before the fact and with a 
high degree of numerical precision. The geodesic trajectories of the theory 
are deductive consequences of the field law, which is the heart and soul of 
the theory (Glymour 1977). If the status of these trajectories as geodesics is 
merely conventional, then the entire theory must be little more than a web of 
conventions. But Grünbaum would surely wish to reject such an unbridled 
conventionalism as that. However, one of the inherent dangers of conventio-
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nalism appears to be that once one has put a foot on its path one can hardly 
stop until one is caught in the web of Quinean pragmatism. 

In the second place, such an interpretation fails to take account of the 
rich experimental resources of general relativity. In particular, there are now 
instruments at one’s disposal by means of whieh the Riemann-Christoffel 
tensor may be directly measured. Next to the metric tensor from which it 
is formed, the Riemann-Christoffel or curvature tensor provides the most 
information about the structure of the manifold. In general relativity it plays 
the role of representing the so-called tidal forces. Due to the inhomogeneous 
character of the gravitational field, two freely falling particles which traverse 
initially parallel paths will eventually cross or diverge frorn each other. 

From this, one may then derive the geodesics (Graves 1971). Accordingly, the 
geodesics can be no more conventional than the observable phenomenon of geodesic 
deviation, and it also provides a basis for the possible detection of graviational waves, 
another phenomenon which only makes sense on the basis of a realistic as distinct 
from a fictionalistic interpretation of gravitation. Therefore, to treat the paths of 
gravitational probes as anything other than geodesics is not simply to opt for a 
semantically equivalent redescription of physical reality but is rather to take the 
more radical course of abandoning the theory of general relativity. This is the basic 
reason why geochronometric conventionalism must be judged a failure in its capa-
bility to provide a philosophic interpretation of general relativity. 

It could be poperly made a bipartite distinction of physical (gravitational) 
metric field and spacetime as the arena in which gravitational and other 
processes take place. The recognition of the last of these as a distinct mode of 
existence has long been highly unfashionable, although much less so in the 
more recent philosophical literature. By locating the metric in the gravita-
tional interaction I am opting for a relational view of the metric. That is to say, 
that I am viewing the metric not as an intrinsic property of spacetime but as 
a relational property of the process which is determined by the distribution of 
matter-energy. If matter-energy were non-existent, i.e. the energy tensor were 
null, then there would be no gravitation and consequently no metric. 

The more commonly held view among physicists is that matter is not the 
source of the metric, per se, but rather the cause of its curvature or deviation 
from flatness. Thus, it would be held that if the energy tensor were everywhere 
zero, the universe would be represented in the form of flat Minkowski spacetime. 
Flat spacetime is imposed as a boundary condition for the celebrated Schwarzs-
child solution of the field equation for an insular spherically symmetric mass. 
The solution was obtained by assuming that at infinity the geometry of the field 
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would be Minkowskian. A rational view of the gravitational phenomenon is 
quite literally that it constrains particles to traverse space-time geodesics. Conse-
quently, if an hypothetical particle of inappreciable mass were introduced into 
the empty universe it would be guided along a timelike geodesic. 

Anyway, the geometric formalism which best fits gravitation compeles us 
to take on an interpretation of physical phenomena that prima facie can be 
hardly unified with the quantum realm. For instance, some effects, typical 
of general relativity, which find a natural explanation in terms of geometric 
concepts (as gravitational time-delay) are very difficult to understand form 
the point of view of quanta exchange (Isham 1997).

New Trends

Two other traits of space-time geometry are usually taken for granted, that 
is, dimensionality and continuity. But perhaps we should not be so confident 
about them. Today string theorists and others are arguing that the most natural 
dimensionality is 10 or 11, since these dimensions allow for the existence of 
various symmetries and also allegedly unify and explain the existence of basic 
forces.  Note that one need not be a conventionalist to make these kinds of 
arguments.  Naturalness, simplicity, consilience, unification, etc., might be 
marks of truth rather than marks of convenience.  Even the conventionalists 
were not so conventionalist about spatial dimensionality (Poincaré suggests that 
biology might «hard-wire» us into believing in three spatial dimensions). Absent 
a developed physical theory that takes dimensionality as contingent and offers 
principled physical constraints on what can happen in different dimensions, 
there seem to be no standards for knowing which laws hold in what dimension. 
Some authors, for instance, propose a dynamical theory of dimension creation 
that would, I suppose, take dimensionality as something to be appropriately 
explained via the dynamics of physical processes (Arkani-Hamed et ál. 2001).  
But such theories are far too speculative for us to have much faith in today.

Reviewing the different approaches we find on searching an unification of 
general relativity and quantum physics, they split into four categories (Callender & 
Huggett 2001). First, there are the Quantum Field Theory-like approaches, such 
as string theory and its relatives. Here General Relativity is to be an emergent 
description; however, the spacetime that appears in the initial formulation of the 
theory is fixed and not dynamical. Next are the so-called background independent 
approaches to Quantum Gravity, such as loop quantum gravity, spin foams, 
causal sets and causal dynamical triangulations. Geometry and gravity here are 
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fundamental, except quantum instead of classical. These approaches implement 
background independence by some form of superposition of spacetimes, hence the 
geometry is not fixed. Third, there are condensed matter approaches. These are 
condensed matter systems, so it seems clear that there is a fixed spacetime in which 
the lattice lives; however, it can be argued that it is an auxiliary construction.

There is also a new, fourth, category that is currently under development 
and constitutes a promising and previously unexplored direction in back-
ground independent quantum gravity (Rovelli 2004). This is pre-geometric 
background independent approaches to quantum gravity. These approaches 
start with an underlying microscopic theory of quantum systems in which 
no reference to a spatiotemporal geometry is to be found. Both geometry 
and hence gravity are emergent. The geometry is defined intrinsically using 
subsystems and their interactions. The geometry is subject to the dynamics 
and hence itself dynamical. It is clear that in all those approaches, space-time 
geometry as a whole would be entirely relational but not conventional.

Some other works in search of unification have attempeted to obtain a 
discrete, or quantized, model for space-time (Loll & Westra 2003). The spirit 
is very much that of the standard lattice formulation of quantum field theory 
where (flat) spacetime is approximated by a hypercubic lattice. The ultraviolet 
cut-off in such field theories is given by the lattice spacing, i.e. the length of 
all one-dimensional lattice edges. We can in a similar and simple manner 
introduce a diffeomorphism-invariant cut-off in the sum over the piecewise 
linear geometries by restricting it to the building blocks mentioned earlier. 
A natural building block for a d-dimensional spacetime is a d-dimensional 
equilateral simplex with side-length a, and the path integral is approximated 
by performing the sum over all geometries (of fixed topology) which can be 
obtained by gluing suchbuilding blocks together, each geometry weighted appro-
priately. It has not been possible, up to now, to define constructively a Euclidean 
path integral for gravity in four dimensions by following the philosophy just 
outlined. One simply has not succeeded in identifying a continuum limit of 
the (unrestricted) sum over Euclidean building blocks. Among the reasons 
that have been advanced to explain this failure, it is clear that the entropy of 
the various geometries plays an important role that is not completely clarified.

Concluding Remarks

Let us conclude this paper by underlining its principal philosophic message. 
It is that talk of the curving of space-time and the slowing down of time in 
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the context of general relativity ought to be treated as an equivalent or indirect 
way of referring to various properties of gravitation. Grünbaum was convinced 
that spacetime is, in itself, metrically amorphous. But whereas he would seem 
to hold that in the absence of an objective metric for spacetime it is necessary 
to introduce a freely chosen metric convention, another possible view is that 
since spacetime lacks metric properties, it is simply a mistake to ascribe them 
either conventionally or otherwise. Talk of the curvature of spacetime is not a 
convention but rather a linguistic expression for a physical phenomenon. On 
the other hand, general relativity provides abundant support for the view that 
the gravitational metric of space-time is not conventional but objective.

For several decades following the inception of the two theories of relativity, 
the majority of scientists and well-informed philosophers supposed that the 
question of the absolute existence of spacetime —the ontology of space-time— 
as debated by Leibniz and Clarke had at last been laid to rest, with Leibniz 
the obvious victor. Maxwell’s aether, which was the embodiment of physical 
space, was shown in the context of special relativity to have been a gratuitous 
notion. The ultimate coup de gráce for the notion of absolute or substantial 
spacetime was taken to have been delivered in the theory of general relativity. 
Einstein’s arguments for the relativity of space and time were unhesitatingly 
accepted as arguments for their relationality. 

Today, however, increasingly many philosophers are coming to recognize 
that the situation is not as clear as had once been supposed. It is possible, 
for instance, to define an absolute four-dimensional rotation vector on the 
space-time manifold of general relativity. In fact, Gödel has shown that the 
notion of an intrinsic rotation of the universe as a whole is compatible with 
the formal structure of general relativity. It is obvious that if spacetime were 
entirely dependent on matter, then it would simply make no sense to ascribe a 
rotation in spacetime to the universe as a whole. A balanced interpretation of 
the available evidence would seem to suggest that although general relativity 
does not exclude some absolute space-time structures, it rather convincingly 
supports the relational or non-absolute character of the metric. 

The conventional element is not an exclusive feature of the geometric methods 
here involved, but a general condition of any mathematical theory when applied 
to the real world. There are indeed intrinsic (absolute) and extrinsic (relational) 
properties of the physical processes described by means of space-time geometry. 
And progress in theoretical physics foces us to face the astonishing fact that 
some traits regarded as intrinsic -i.e., dimensionalty or continuity- might not 
be finally that way. All those features are not conventional, but an empirical 
matter of fact whose ultimate characterization a philosopher must seek inside 
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the circle of scientific Knowledge. Even though science can only provided us 
with knowledge that will never be complete, perfect or permanent.
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