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abstract

In recent years, the bosonic behavior that a many-fermion system can exhibit has raised 
interest among physicists. In this paper, an approach based on tensor product structures 
is taken and an ontology of properties is assumed to argue for the relativity of the notion 
of statistical identity and for a realistic interpretation of trans-statistical behavior.

Keywords: philosophy of physics; virtual particles; composite bosons; ontology of prop-
erties; tensor product structure. 
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resumen

En los últimos años, el comportamiento bosónico que un sistema de fermiones puede 
exhibir ha despertado el interés de los físicos. En este trabajo, se adopta un enfoque 
basado en estructuras producto tensorial y se asume una ontología de propiedades para 
argumentar en favor de la relatividad de la noción de identidad estadística y en favor de 
una interpretación realista del comportamiento trans-estadístico.

Palabras clave: filosofía de la física; partículas virtuales; bosones compuestos; estructu-
ra producto tensorial; ontología de propiedades.

 

 

 

 
 
 
 

 
 
 

1. INTRODUCTION 

According to quantum mechanics, systems composed of identical particles are 
either fermions or bosons in a mutually exclusive manner. However, under 
certain circumstances, pairs of fermions can behave as composite bosons, called 
cobosons. Generally, in the realm of physics, this behavior is not considered to 
be realistically interpretable but is merely a description based on idealized, and 
therefore approximate, models. This article defends the idea that the bosonic 
behavior that a system of fermions can exhibit can be realistically interpreted if 
certain ontological commitments are assumed. To do this, it will use: (1) a 
simple toy model that employs different partitions of Hilbert space, also called 
tensor product structures (TPS), from which it is argued that the statistical 
identity (fermionic or bosonic) of a system composed of identical particles is 
relative to the TPS; and (2) an ontology of properties where quantum systems 
are seen as clusters of possible properties, without identity conditions typical of 
individual objects. The structure of the article is as follows: Section 2 
introduces the reader to a quantum feature called indistinguishability, which 
determines the identity and behavior upon permutations of quantum systems. 
Section 3 addresses the phenomenon of trans-statistical behavior and its 
conventional interpretation in the physical realm. Section 4 briefly presents 
some results of the approach based on TPSs that several authors have 

 

 

developed in recent years, an approach in which this proposal seeks to be 
inscribed. Section 5 proposes a version in Hilbert space formalism of the toy 
model, suggesting the relativity of the notion of statistical identity with respect 
to the TPS. Section 6 provides an overview of the ontological challenges posed 
by quantum mechanics and introduces the ontology of possible properties, 
inspired by algebraic formalism. Finally, Section 7 presents an algebraic 
formalism version of the toy model from Section 5, showing more clearly the 
relevance of a property ontology to explain trans-statistical behavior 
realistically. 

 

2. QUANTUM INDISTINGUISHABILITY 
     AND STATISTICAL BEHAVIOR 

The statistical behavior of quantum systems, whose subsystems possess 
identical properties, differs significantly from that of their classical 
counterparts. For reasons that will be explained below, this quantum behavior is 
based on the premise that quantum subsystems of the same type are 
indistinguishable. Statistical mechanics arises to explain the behavior of 
complex systems whose macroscopic properties are derived from the states of 
their subsystems. Take, for example, a volume of gas at a certain temperature, 
which is related to the kinetic energy of its molecules. Since it is unfeasible to 
obtain information about the individual state of each subsystem, statistical 
methods are used. These methods assume that all possible distributions of the 
subsystems among the different states have the same probability. In the 
following example, these distributions of subsystems among possible states will 
be called 'complexions'. Consider two subsystems AS  and BS , and two posible 

states 1  and 2 . If the subsystems are classical, the following 
complexions are obtained (Fortin & López 2016): 

(1) AS  and BS  both are found in the state 1 . 
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(2) AS  is found in the state 1  and BS  in the state 2 . 

(3) BS  is found in the state 1  and AS  in the state 2 . 

(4) AS  and BS  both are found in the state 2 . 
 
It's important to note that when taking complexion (2) and permuting 

the subsystems between the states (or, equivalently, permuting the states 
between the subsystems), one obtains complexion (3). The statistics that arise 
when considering that permutations of subsystems result in different 
complexions is known as the Maxwell-Boltzmann distribution and is used in 
the classical context. 

Now consider the case of quantum subsystems, in particular, particles 
with integer spin or bosons. The following complexions are obtained: 

 

(1) Both systems are in the state 1 . 

(2) One system is in the state 1  and the other in the state 2 . 

(3) Both systems are in the state 2 . 
It should be noted that for quantum subsystems, it doesn't make sense to 

retain the labels  AS  and BS . This is because, unlike the classical case, when 
taking complexion (2) and permuting subsystems, one doesn't obtain a distinct 
complexion that needs to be statistically accounted for. Contrary to what one 
might expect, permuting quantum subsystems of the same type has no 
observational consequences. This peculiarity of quantum subsystems is 
reflected in what is called the indistinguishability postulate IPst) (the standard 
specification is added because a version of IP centered on observables rather 
than states will be introduced later):  

IPst: If the vector   represents the state of the composite 
system whose subsystems are indistinguishable, then the expected 

 

 

value of any observable represented by an operator O  must be 

the same for   and for any permutation '   

stPI :    siendo  ' O ' O ' P     = = MERGEFORMAT 

Where P  is a generic permutation operator (see Butterfield 1993). This 
postulate led some of the founding fathers of quantum mechanics, such as Born 
and Heisenberg, to consider that quantum systems might behave as non-
individual entities. Indeed, among quantum systems, there can be a mere 
numerical difference, even when all their properties are indistinguishable. If 
there were numerical identity between them (i.e., if they were the same object), 
only two complexions would have been counted in the previous example. If the 
systems had at least some distinguishable properties, we should have counted 
four complexions, as it is the case in the classical scenario. However, the 
statistical law applicable to bosons leads us to account for only three 
complexions in our example. It is imperative to accept that, in the quantum 
context, indistinguishable systems can be numerically distinct, resulting in a 
violation of Leibniz's principle of the identity of indiscernibles. This principle, 
formulated in classical metaphysics, serves as a criterion for numerical identity 
for classical systems that possess identity conditions defining them as 
individual objects. 

The quantum statistics mentioned in the previous example is known as 
Bose-Einstein statistics. Hence, integer spin particles that follow this statistical 
law are called "bosons". Correspondingly, we will say that indistinguishable 
systems governed by this law have bosonic statistical identity (using the notion 
of identity here in terms of qualitative identity). However, it is essential to note 
that this is not the only statistics applicable to quantum systems. Half-integer 
spin particles, or fermions, are governed by the Pauli exclusion principle, which 
prohibits two or more particles from coexisting in the same state. For these 
particles, the only possible complexion in our example of a system composed 
of two subsystems and two states is: 
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(1) One system is in the state 1  and the other in the state 2 . 
Fermions obey the statistics known as Fermi-Dirac, from which they 

derive their name. We will say that indistinguishable systems that adhere to this 
statistical law have fermionic statistical identity (in the sense of qualitative 
identity). The differentiation between the two types of statistical identity 
(fermionic and bosonic) in the quantum context is due to the fact that IPst is 

fulfilled only in symmetric states S  or antisymmetric A  regarding the 
permutation operators. Both types of states are eigenstates of the possible 

permutation operators, with eigenvalues ( )1  and ( )1−  respectively. That is: 

S S

A A

P

P

 

 

=

= −  MERGEFORMAT 

Due to the nature of the formalism, the previously mentioned exclusion 
principle is clarified, introduced initially to explain the distribution of electrons 
among different energy levels in atomic structure. Because of this, an additional 
postulate was incorporated into the formalism of quantum mechanics: the 
symmetrization postulate (SP). This postulate represents an ad hoc restriction 
on the set of possible states that the formalism admits for systems with 
indistinguishable subsystems, ensuring in these, the satisfaction of IPst. SP can 
be formulated as follows (Fortin & Lombardi 2021): 

 
SP: A multi-particle system of identical particles must be 
represented by a quantum state that is either fully symmetric 
(bosons) or fully antisymmetric (fermions), where the symmetry 
or antisymmetry is defined in terms of the permutation operators 
P . 

           ' P  = =   MERGEFORMAT 

 

 

To obtain symmetric S  or antisymmetric A  states, 
symmetrization  or antisymmetrization A  operators must be applied 

respectively to a generic state   

            
S

A

S

A

 

 

=

=  MERGEFORMAT 

Based on what has been presented so far, it seems logical to interpret 
that the statistical identity of a composite system is predetermined in an 
absolute manner at a more fundamental level than that directly described by the 
formalism of quantum mechanics. This arises from the need to introduce a 
specific restriction to the formalism, either by symmetrizing the state or, as an 
alternative, by antisymmetrizing it. In other words, it seems that to address the 
notion of statistical identity, it is necessary to incorporate ad hoc a postulate 
that complements the formalism and aligns it with the statistically observed 
behavior. Clearly, with this interpretation, it becomes challenging to accept any 
kind of trans-statistics in a realistic sense, whether in terms of identity or 
behavior. However, as will be shown later, the argument developed in this 
article seeks to challenge this interpretation, relativize the notion of statistical 
identity, and allow a realistic understanding of trans-statistical behavior.   

 

3. THE TRANS-STATISTICAL BEHAVIOR 

In this presentation, the term "trans-statistical behavior" refers to a particular 
phenomenon that has captured the attention of physicists for several decades. It 
pertains to the fact that, under certain circumstances, a fermion system 
unexpectedly exhibits bosonic statistical behavior. It is argued that pairs of 
fermions can behave as composite bosons, also called cobosons. It's important 
to note that we are not referring to the already known cases where a strong 
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nuclear interaction between fermions is observed, such as in a set of protons 
and neutrons (half-integer spin particles) that interact through the strong nuclear 
force to form an atomic nucleus. For instance, two protons and two neutrons 
can make up a Helium-4 nucleus. These atomic nuclei are composite systems 
that can display empirically verifiable bosonic behavior, such as superfluidity 
(Brooks & Donnelly 1977). 

On the other hand, trans-statistical behavior does not stem from the 
strong nuclear interaction between fermions, and therefore, each subsystem can 
be dynamically independent. This feature makes the phenomenon theoretically 
intriguing since, according to the symmetrization postulate, the state of a 
composite system must be symmetrized or antisymmetrized ab initio, while the 
dynamic law of quantum mechanics does not allow a symmetric state to evolve 
into an antisymmetric state and vice versa. The symmetry or antisymmetry of 
the state of an isolated composite system must be maintained in any unitary 
dynamic evolution. Law (2005) addressed this phenomenon and found that the 
degree of entanglement between fermions determines to what extent a fermion 
system acts as a coboson system, and that interactions are not essential. If they 
exist, they simply intensify quantum correlations, which do seem to be crucial 
for the emergence of bosonic behavior. Subsequently, Chudzicki et al. (2010) 
and Tichy et al. (2014) achieved a generalization of Law's approach using 
creation and annihilation operators. This phenomenon is also relevant due to its 
applications in areas such as quantum information processing (Gigena & 
Rossignoli 2015), Bose-Einstein condensates (Avancini et al. 2003; Rombouts 
et al. 2003), excitons (Combescot & Tanguy 2001), Cooper pairs in 
superconductors (Belkhir & Randeria 1992), and confined Wigner molecules 
(Cuestas et al. 2020). 

Generally, in the field of physics, there is a tendency to accept that 
trans-statistical behavior cannot be interpreted in a realistic manner. The 
prevailing interpretation holds that attributing bosonic behavior to a fermion 
system is merely an empirically adequate description, based on the use of 
idealized models and, therefore, inherently approximate (see, for example, 
Tichy et al. 2014). To illustrate this point, consider the perpetual motion 

 

 

inferred from models used to analyze pendulums. Physicists understand that 
perpetual motion is not expected in a real pendulum, which only behaves 
approximately in relation to the ideal model. Similarly, the bosonic behavior of 
a fermion system belongs, in a strict sense, to an ideal model and applies to real 
systems only approximately. Designating the behavior of a fermion system as 
bosonic is simply a useful description. This interpretation is supported by 
previously mentioned studies that link trans-statistical behavior to the degree of 
entanglement between the fermions of each pair. Thus, bosonic behavior, in a 
strict sense, would be viable only in an ideal situation where the degree of 
entanglement is total, that is, when =K M , where K  is the Schmidt number 
and M  is the number of modes that contain the Schmidt decomposition of the 
state (see Law 2005). It is considered, therefore, that the statistical behavior of a 
fermion system resembles bosonic behavior, but without being bosonic in a 
strict sense. The transition from one statistical behavior to another is 
understood, then, as a mere useful description without an in re reference. 
Consequently, the ontological status of cobosons is diminished. They are 
considered as virtual particles or quasiparticles, not comparable to conventional 
bosons, which are assumed to be elementary. 

 

4. TPS APPROACH 

A Tensor Product Structure (TPS) is a specific way (among several possible) to 
factorize or divide the Hilbert space, which represents a system, into subspaces 
that represent its subsystems. For example, consider a system U  with an 

associated Hamiltonian UH  and eigenstates N  such that =U NH N E N , 

where NE  are the possible values of the energy observable. The eigenstates 
N  constitute a basis that generates the Hilbert space UH , representing the 

system U , in which the possible states   of U  can be defined. Suppose it is 

possible to factorize the eigenstates N  through the tensor product 
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 =i iim m N . This way of decomposing N  suggests that the system U  

is composed of two subsystems with states im  and iim . Under certain 

conditions, it is possible to define an iH  operator that acts as the Hamiltonian 

of the first particle so that the vectors im  are eigenstates of this operator, such 

that =
ii i m iH m e m , while the vectors iim  are the operator’s eigenstates 

iiH  such that =
iiii ii m iiH m e m , with i ii i ii UH I I H H +  =  (for the sake 

of simplicity, it is assumed that there is no interaction in this decomposition). 

Consequently, the energy values ime  and iime  are such that i iim m Ne e E+ = . The 

eigenstates im  and iim  respectively generate the subspaces iH  and iiH  so 

that  =i ii UH H H . The subspace iH  represents the subsystem iS  and the 

subspace iiH  represents the subsystem iiS  so that  =i iiS S U . In this way, a 
tensor product structure represents one way, among many mathematically 
possible, to decompose a system into subsystems. 

In a manner analogous, if the focus is shifted from the state to the 
observables, as is done in the algebraic formalism, it's possible to decompose a 
system into subsystems by breaking down the algebra of observables that 

represents it into subalgebras. Consider a system  U  with observables UO  that 

form an algebra UO  such that U UO O . In this formalism, the state of the 
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defines the subsystem iS  and iiO  defines the subsystem iiS  such that 
 =i iiS S U . 

In this article, "TPS approach" refers to a line of research developed by 
various authors, who have examined the relativity of certain notions closely 
linked to quantum formalism in relation to the prior specification of a tensor 
product structure for a system. Thus, concepts such as the entanglement of 
quantum states or the separability between subsystems have been reconsidered 
from this perspective with notable results. Harshman and Wickramasekara 
(2007) emphasized the diversity of TPSs that a system can have, highlighting 
those that allow each subsystem to undergo both global symmetry 
transformations and dynamic transformations. These are termed by the authors 
as "symmetry invariant" and "dynamically invariant" TPSs. These TPSs are of 
special interest because the subsystems defined by them respect the symmetries 
of the Galilean group and have a unitary dynamic evolution. 

Earman (2015), employing the algebraic formalism, placed emphasis on 
the relativity and even the ambiguity of the concept of entanglement. He 
posited that the entanglement of a system's state, delineated by its observable 
algebra, is inherently an entanglement relative to a decomposition of the 
algebra into subalgebras. A quantum state might be entangled with respect to 
one specific decomposition, yet be factorizable in relation to others. Absent a 
criterion that determines which decompositions ought to be favored, the 
concept of entanglement, in Earman's view, remains equivocal. 

Zanardi (2001) and Dugić and Jeknić (2008) focused on the relativity of 
the notion of separability between subsystems. Zanardi attempted to circumvent 
the ambiguity of the separability notion by selecting those subalgebras of 
operators that represent a set of operationally accessible observables. These 
represent "real" subsystems as opposed to "virtual" subsystems, whose 
observables could not be measured. Dugić and Jeknić sought criteria to 
distinguish between "real" and "virtual" subsystems from the perspective of 
quantum decoherence and quantum information. However, they acknowledge 
that not only the notion of separability between subsystems, but also the very 
notion of a system should be relativized. 
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The intriguing question about the nature of systems (what is a system? 
2006), posed by Dugić and Jeknić, might arise when taking the TPS approach 
beyond the purely physical realm, considering its ontological implications. This 
article proposes to address the question of the nature of systems as follows: ae 
physical systems individual entities or, at least, objects with clear identity 
conditions, such that the choice of TPSs is not only mathematically viable but 
also physically relevant? Or is it possible that physical systems lack, even at an 
ontological level, identity conditions that allow for finding physical criteria to 
select the appropriate partition? Later on, this article will advocate for the idea 
of an equivalence between the different ways of partitioning the Hilbert space, 
based on an ontology of possible properties for quantum systems. Through a 
model of trans-statistical behavior introduced below, the equivalence between a 
partition that "separates" ordinary fermions and another that "separates" 
composite bosons or cobosons will be examined. 

 

5. A TOY MODEL  

In this section, we propose a toy model for four fermions and two cobosons, 
which can be easily generalized to any even number of fermions. We will 
decompose a system using two distinct TPSs. Through the first one, subsystems 
with fermionic identity will be derived, and through the second, subsystems 
with bosonic identity. It is important to note that, unlike the models used in 
previously mentioned physical studies, our model does not rely on an 
experimental context to assess the conditions of trans-statistics. Instead, it 
explores an inherent possibility in the mathematical formulation of the theory. 
As will be shown, one of the strengths of the model might be its ability to 
determine the fermionic or bosonic identity of a total system without the need 
to alter its state according to the demands of the symmetrization postulate (SP). 
We suggest that this model indicates a new finding within the TPS approach: 
not only are the notions of entanglement and separability relative to the prior 

 

 

specification of the partition, but also the notion of statistical identity of a 
composite system becomes relative to the TPS from this perspective. 

 
5.1 TENSOR PRODUCT STRUCTURE ALPHA (TPS OR PARTITION A) 

Consider a system U  associated with a Hamiltonian H  with eigenstates N  

that generate a Hilbert space H . The possible states  H  of the system U  
can generally be written as: 

 = N
N

c N  MERGEFORMAT 

In this model, the system is composed of four non-interacting spin-½ 
particles, thus there is an automatically defined partition which will be called 

TPS A (alpha). To make this explicit, the eigenstates are factorized N  by 

means of the tensor product 1 2 3 4   =n n n n N . Where 1n , 2n , 

3n  and 4n  are the eigenstates of the Hamiltonians 1H , 2H , 3H  and 4H  for 

each particle respectively and generate the subspaces 1H , 2H , 3H  and 4H  

such that 1 2 3 4   = UH H H H H . The subspace 1H  represents the 

subsystem 1S , the subspace 2H  represents  the subsystem 2S , the subspace 3H  

represents the subsystem 3S  and the subspace 4H  represents the subsystem 

4S , such that 1 2 3 4   =S S S S U . The possible states 1 1 H  of the 

subsystem 1S  are written as 1

1

1 1 = n
n

c n ; the possible states 2 2 H  of 

the subsystem 2S  are written as 2

2

2 2 = n
n

c n ; the possible states 
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3 3 H  of the subsystem 3S  are written as 3

3

3 3 = n
n

c n  and the 

possible states 4 4 H  of the subsystem 4S  are written as 4

4

4 4 = n
n

c n . 

The possible states  H  of the subsystem U  can now be rewritten in the 
following way: 

1 2 3 4

1 2 3 4

, , , 1 2 3 4
, , ,

 =    n n n n
n n n n

c n n n n MERGEFORMAT 

Now, a first series of permutation operators that exchange the states of 
only two of the subsystems is defined: 

2134 2 1 3 4

3214 3 2 1 4

4231 4 2 3 1

1324 1 3 2 4

1432 1 4 3 2

1243 1 2 4 3

=   

=   

=   

=   

=   

=   

P N n n n n

P N n n n n

P N n n n n

P N n n n n

P N n n n n

P N n n n n

 MERGEFORMAT 

Since the subsystems 1S , 2S , 3S  and 4S  are fermions, the state   of 

the total system U must be antisymmetric with respect to a permutation. That 
is: 

 

 

2134

3214

4231

1324

1432

1243

 

 

 

 

 

 

= −

= −

= −

= −

= −

= −

P

P

P

P

P

P

 MERGEFORMAT 

To ensure that the state   is fully antisymmetric, the state   must 
be antisymmetrized using an antisymmetrization operator 

1
!

A P
N 



= 
 (9) 

that is constructed from all the permutation operators P , those defined in (7) 
along with other second and third-order permutators (see details in Ballentine 

1998). In this way, A  allows for the antisymmetrization of   to obtain the 

antisymmetric state A  that ensures the fermionic identity of the subsystems 

1S , 2S , 3S  and 4S  of the composite system U . Thus, 

AA =  (10) 

and in this way satisfy the indistinguishability postulate PIst (eq. 1), as 
expected from a system of indistinguishable particles. 

( )†

st

2

PI :    siendo  

1A A A A A A

' O ' O ' P

P OP O O 

     

     

= =

=  =
 (11) 
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Where P  represents any permutation operator. As can be seen, the 

squared eigenvalues (1)  or ( 1)−  have a neutral effect. 
 

5.2 TENSOR PRODUCT STRUCTURE BETA (TPS OR PARTITION B) 

Consider the same system U  associated with the same Hamiltonian H  

with the same eigenstates N  that generate a Hilbert space H . Now define a 

new partition TPS B (beta) by factorizing the eigenstates N  in a different 

way than was done in TPS A, now using the tensor product i iim m N =  

such that 1 2im n n=   and 3 4iim n n=  . The bases im  and iim  

respectively generate the subspaces iH  and iiH  such that i ii U =H H H . The 

subspace iH  represents the subsystem iS  and the subspace iiH  the subsystem, 

such that i iiS S U = . Given that  

▪ 1 2im n n=  , it follows that 1 2i H =H H , hence 

1 2iS S S=  .  

▪ 3 4iim n n=  , it follows that 3 4ii H =H H , hence 

3 4iiS S S=  .  
This establishes a clear correspondence between both partitions. The 

possible states i i H  of subsystem iS  are written as i
i

i m i
m

c m =  and 

the possible states ii ii H  of subsystem iiS  are written ii
ii

ii m ii
m

c m = . 

The possible states  H  of the system U  can now be rewritten in the 
following way: 

 

 

,
,

i ii
i ii

m m i ii
m m

c m m =   (12) 

In this case, it is possible to define a single permutation operator 
corresponding to TPS B: 

ii i ii iP N m m− =   (13) 

Since there is a correspondence between the states in TPS A and states 

in TPS B such that 1 2im n n=   and 3 4iim n n=   exist, there is also 

a correspondence between the operator ii iP −  and one of the permutation 
operators of TPS A. Namely, 

3 4 1 2 3214 1432ii i ii iP N m m n n n n P P N− =  =    =  
 

 (14) 

Thus, 

3214 1432ii iP P P− =  (15) 

When considering partition A, it was assumed that the subsystems 1S , 

2S , 3S  and 4S  are fermions, and therefore the state of the system U  was 

antisymmetrized to obtain A  . Without abandoning this assumption in the 

following, let's see how the operator ii iP −  acts on the antisymmetric state A . 

3214 1432ii i A A AP P P  − = =  (16) 
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This result is significant because the same state A  turns out to be 

symmetric with respect to the operator ii iP − . Thus, the notation that introduces 

the subscript A when the state is antisymmetric ( A ) and the subscript S 

when it is symmetric ( S ) becomes insufficient because this example shows 
that the same state can be symmetric or antisymmetric depending on which TPS 
is considered. Indeed, in our example, the state of the system is antisymmetric 
if analyzed from TPS A but is symmetric if analyzed from TPS B, that is: 

(TPSA) (TPSA)A S =  (17) 

This means that precisely because it was assumed that the subsystems 

1S , 2S , 3S  and 4S  of partition A are fermions, it must be admitted that the 

subsystems iS  and iiS  of partition B can be identified as bosons.  
 

5.3 THE RELATIVITY OF THE NOTION OF STATISTICAL 
IDENTITY AND THE ONTOLOGICAL STATUS OF COBOSONS. 
PARTIAL CONCLUSIONS. 

The aforementioned result leads to the assertion that the system U  with respect 
to TPS A is a fermionic system and, at the same time, that the system U  with 
respect to TPS B is a bosonic system, without the need to modify its state (i.e. 
without reapplying SP to obtain the bosonic identity). The model proposes that 
the statistical identity of a composite system, which can be divided into 
indistinguishable subsystems, depends on the selected tensor product structure 
(or simply TPS-relative). This suggests that for any system composed of an 
even number of fermions, there exists an alternative TPS where each pair of 
fermions is considered as a single subsystem. This perspective could be added 
to the results previously derived from the TPS approach. Specifically, in 

 

 

addition to the relativity in the notions of separability and entanglement, we 
could now consider statistical identity as another relative property. If this 
interpretation is correct, the fermionic or bosonic identity of a system that can 
be divided into indistinguishable subsystems should be understood in terms 
relative to the TPS. In this framework, the designations "being a fermion" and 
"being a boson," applicable to indistinguishable subsystems, would be 
interpreted as relational properties. Thus, a subsystem would have a specific 
statistical identity in relation to other subsystems within the same partition, 
rather than possessing an identity in a more absolute sense. Therefore, it would 
not be essential to consider the properties of "being a fermion" or "being a 
boson" as fixed categories, and hence, it would not be necessary to adjust them 
to the formalism through a specific postulate, such as the ad hoc (SP). 

The toy model suggests that the condition of possibility for trans-
statistical behavior lies in this notion of TPS-relativized statistical identity. 
Thus, trans-statistical behavior would not depend solely on specific physical 
conditions modeled approximately (e.g., the degree of entanglement of the 
states of the fermions in each pair), but also on a form of trans-statistics present 
at a more fundamental level: the qualitative identity of the systems. Therefore, 
it could be interpreted that trans-statistical behavior is not merely a convenient 
description of a certain phenomenon. This behavior could be linked to the 
conditions under which the qualitative identity of indistinguishable quantum 
systems is established, and, from this perspective, could be interpreted in a 
realistic manner. 

However, the partial conclusions that might be derived from the toy 
model based on the TPS approach should be considered with caution for the 
time being. Although the model succeeds in avoiding the repeated use of the 
symmetrization postulate (SP) to obtain a system of bosons from a system of 
fermions, it still relies on the formalism of Hilbert spaces. In this formalism, the 
state vector identifies a quantum system, and the operators representing 
observables act in an already defined state space. These particularities of the 
Hilbert space formalism align it with an ontology of individual objects that 
possess inherent properties. This ontology does not allow for the full 
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relativization of the notion of separability, and therefore blocks the path 
towards a relativized notion of statistical identity. Among all the available 
TPSs, some must give rise to subsystems that coincide with objects that 
maintain conditions of identity. Hence, for this ontology, the TPSs that define 
more basic subsystems will have priority. And since in the toy model the state 
vectors that define the subsystems of TPS B can be expressed as tensor 
products of the state vectors of TPS A (and not vice versa), the natural 
interpretation is that the total system is fermionic and that TPS A has 
ontological primacy over TPS B. 

Therefore, at this stage of the proposal, where a model still based on the 
formalism of Hilbert spaces has been presented, the mentioned hierarchy 
between TPSs compels us to grant ontological priority to the subsystems of 
TPS A, and to reconsider what was previously stated about the relational 
character of the notion of statistical identity. The subsystems are fermions that 
can act like bosons when considered in pairs; however, these pairs are not 
genuine bosons, but cobosons. In other words, the statistical identity of the total 
system (fermionic) is determined by identity conditions linked to the 
subsystems in their individuality, disregarding the relationships that exist 
between subsystems within a composite system. From an ontology of 
individuals, one must assert: "this is a system of fermions that, although it is not 
a system of bosons, can behave as such." Fermions are concrete systems, while 
cobosons are merely apparent particles, in line with what is commonly assumed 
in the physical context. 

However, a more detailed response to the dilemma of the relative or 
absolute nature of statistical identity (and, in relation to this, the problem of the 
ontological status of cobosons and the realistic interpretation of trans-statistical 
behavior) will be provided after introducing the algebraic version of the toy 
model and its interpretation based on the ontology of properties, suggested by 
the algebraic formalism of quantum mechanics. 

 

 

6. THE ONTOLOGY OF PROPERTIES 

Traditional metaphysics developed the ontological notion of individual object, 
pertinent to classical physical systems. This notion of individual object is linked 
to the semantic notion of singular reference and the logical notion of the subject 
of predication (Laycock 2014). Therefore, the idea of individual object is 
inherently complemented by the ontological notion of properties. In other 
words, a set of properties belongs to individual object and is predicated of it. 
Such an object is distinguished by possessing conditions of identity that 
differentiate it synchronically from other objects and allow its diachronic 
reidentification despite changes in its properties over time. Some approaches 
maintain that individuality of an object is based on a principle that goes beyond 
properties, such as substance (transcendental individuality). Others argue that 
individuality of an object lies solely in its properties (bundle individuality). 
Those who see individual object as a bundle of properties take on the additional 
challenge of establishing criteria for synchronic and diachronic identity based 
purely on properties. For diachronic identity, the object's spatiotemporal 
trajectory is commonly used. As for synchronic identity, some variant of 
Leibniz's Principle of Identity of Indiscernibles (PII) is generally adopted. The 
PII states that two objects with indistinguishable properties are numerically 
identical, that is, they must be considered in the ontological realm as a single 
object. Different interpretations of the PII derive from considering different sets 
of properties (monadic, relational, etc.) as essential for the criterion. 

In section 2, the indistinguishability of quantum systems was alluded to. 
The statistics governing quantum systems of the same type led us to recognize 
that if these systems are objects in any sense, they are so in an atypical way, 
given that they lack conditions of identity that categorize them as individuals. 
Specifically, they do not obey the PII, since in quantum mechanics, systems 
with indistinguishable properties present only numerical difference. Moreover, 
the so-called quantum contextuality, which prevents all observables of a system 
from having simultaneously defined values, challenges the traditional principle 
of omnimodal determination expected of any individual object, and hinders the 
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possibility of using the spatiotemporal trajectory as a criterion for diachronic 
identity. Finally, there are situations in which quantum systems violate the 
principle of locality, which is expected to be fulfilled by every individual 
object. These three ontological challenges posed by quantum systems led, even 
in the initial phases of the formulation of quantum mechanics (see Weyl 1931), 
to the indication that quantum systems do not possess the typical conditions of 
identity of individual objects. This perception was consolidated in what is 
called the "received view" on the ontological status of quantum systems, which 
subsequently led to the development of alternative formal systems to represent 
non-individual objects (such as Krause's quasi-set theory of 1992). Recently, 
various authors have questioned the received view, arguing that the notion of an 
individual object can be reclaimed if the PII is discarded, or at least some of its 
more restrictive versions. Van Fraassen (1985) suggests abandoning the 
principle of equiprobability; French (1989) postulates that neither symmetric 
nor antisymmetric states are ontologically viable but physically unreachable; 
Muller and Saunders (2008) explore ways to identify relational properties that 
differentiate between fermions. In this context, some defenders of modal 
interpretations of quantum mechanics have outlined an innovative ontology of 
possible properties, in which quantum systems lack conditions of identity that 
define a subject of predication (see Lombardi & Castagnino 2008, da Costa, 
Lombardi & Lastiri 2013; da Costa & Lombardi 2014; Lombardi & Dieks 
2016). This proposal aligns with the revolutionary character of the received 
view. According to this ontology, quantum systems cannot be seen as 
individuals, and not even as objects (see Lombardi & Pasqualini 2022). It will 
be discussed how, in this proposal, the notion of physical separability between 
systems is not ontologically predefined, but emerges from pragmatic 
stipulations in the realm of physics. Originally conceived to address the 
traditional ontological challenges of indistinguishability, contextuality, and 
non-locality, it is argued that this ontology is also the most appropriate for 
interpreting (in a realistic approach) the trans-statistical behavior that is the 
focus of this article. 

 

 

6.1 THE ONTOLOGY OF PROPERTIES AND ALGEBRAIC FORMALISM 

Standard presentations of quantum mechanics utilize the Hilbert space 
formalism for the mathematical representation of physical systems. A Hilbert 
space is structured from a set of complex vectors, where each vector 
symbolizes a possible state of the system. Physical observables are represented 
by operators acting on these pre-established state vectors. This logical primacy 
of the state space over the operators symbolizing observables points to an 
ontology of individuals, in which systems are defined by their state space and 
identified by their state vector. Subsequently, they acquire the properties 
associated with the operators (cf. Ballentine 1998 234-235). 

However, it is also possible to employ the algebraic formalism in 
quantum mechanics, which is mathematically equivalent to the former. In this 
formalism, quantum systems are immediately represented by an operator 
algebra that represents their observables. Quantum states are represented by 
functionals acting on the previously defined operators. In this case, the logical 
priority of the operators representing the observables over the functional 
representing the state suggests an ontology of properties in which quantum 
systems are immediately defined by their properties, corresponding to the 
operators, without any substrate. The state of the system lacks an ontological 
correlate, being merely a mathematical device that encodes the probability 
distributions among possible values corresponding to each observable. 
(Ballentine 1998 48). 

To be more specific, the ontology of possible properties is defined 
through the following semantic correspondences (cf. Lombardi & Pasqualini 
2022): 
 

 
▪ The algebra of self-adjoint operators represents the set of physical 

observables that define a quantum system, which in turn corresponds to 
the set of instances of universal type- properties in the ontological 
domain. 
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▪ The eigenvalues of the self-adjoint operators represent possible physical 
values, which in turn correspond to the set of possible case-properties 
belonging to each instance of type-property. 

▪ Probability functions represent probability distributions for each physical 
observable, which in turn correspond to the ontological propensities for 
the actualization of each possible case-property. 

▪ Functionals over the algebra of observables represent physical states. 
They are simple devices that assign a probability distribution to each 
observable of a singular system and, therefore, from the ontological point 
of view, encode the ontological propensities for all possible case-
properties of the system. 

It should be noted that the term "possible properties" is used because, as 
mentioned, this ontology was conceived in the context of modal interpretations, 
where the category of possibility has ontological content. However, nothing 
prevents its application outside of modal interpretations. In this ontology, 
quantum systems are considered bundles of possible properties. This proposal 
aligns with the traditional approach to bundle individuality, but with the 
significant distinction that, unlike the traditional theory of bundles of actual 
properties, it does not seek to impose the conditions of identity characteristic of 
individual objects onto properties. In addition to the challenges presented by the 
ontological treatment of indistinguishable systems, a quantum system could not 
be considered a bundle of actual properties due to the limitations associated 
with quantum contextuality, clearly established in the Kochen and Specker 
theorem (1967). On the contrary, this ontology intentionally seeks to dismantle 
any ontologically grounded conditions of identity. Regarding possible 
properties, the PII is not incorrect; it simply does not apply, as there is no 
impediment to the numerical difference between two formal objects with 
identical possible properties. To further differentiate from the traditional bundle 
theory, the term "cluster" of possible properties has been adopted to refer to 
quantum systems in the ontological domain (Lombardi & Pasqualini 2022). 

As observed, the conventional image of quantum systems as particles 
with relatively stable conditions of identity is diametrically opposed to the 

 

 

image of quantum systems provided by this ontology. According to it, quantum 
subsystems, considered individually, do not possess conditions of identity that 
are maintained when integrated into compounds. Clusters of properties can be 
aggregated to form new clusters, without the originals being reidentifiable. In 
turn, a cluster can be broken down in various ways, without any having 
ontological preeminence. Specifically, revisiting the TPS approach mentioned 
previously, if a system can be mathematically divided in various ways, the 
ontology does not favor any division as representative of conditions of identity 
that establish outstanding singular references. The distinction between "real" 
and "virtual" systems is blurred. This ontology, therefore, provides a clear 
ontological sense to a notion of separability that is completely relativized, as 
suggested by the TPS approach. From the postulates of this ontology, neither 
the traditional atomistic perspective, where all physical reality is constructed 
bottom-up from elementary systems with absolute conditions of identity, nor a 
holistic, top-down view, where the identity of the parts is completely relativized 
to the properties of the whole, is derived. This does not prevent that, in physical 
practice and in the interpretations of quantum mechanics, it is convenient to use 
certain partitions rather than others, establishing relatively stable conditions of 
identity for certain systems. However, from this ontology, such preference for 
certain divisions has no ontological foundation but results from stipulations 
oriented towards practical or interpretative goals. 

 
ONTOLOGY OF PROPERTIES AND INDISTINGUISHABILITY 

From an ontology of properties, where quantum systems are defined not by 
their state space or state vector, but by their possible type-properties and case-
properties, it is necessary to reformulate the standard postulate of 
indistinguishability. In this context, it is the quantum observables that must be 
invariant under the available permutation operators. This reformulation is 
known as the principle of indistinguishability over observables IPobs: 
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IPobs: If the operators O  represent the observables of the composite 
system whose subsystems are indistinguishable, then the expectation 
value of any observable represented by an operator O  must be the same 
for O  and for any permutation O' .  

           
†

obsIP :    where  O' O O' P OP   = =  (18) 

To satisfy IPobs, there is no longer a need to symmetrize or 
antisymmetrize the state of the system but to directly symmetrize the system's 
observables. The reformulated SP reads: 

SPobs: A system of multiple identical particles must be represented by 

an algebra of symmetric operators sim simO O , where symmetry is 
defined in terms of permutation operators P . 

            ( )2† 1 simO' P OP O O= =  =  (19) 

This condition imposed on the observables includes both bosons and 
fermions. It is easy to recognize this if we refer to the restriction that is usually 
imposed on the states. In the case of bosons, it is required that the wave 
function be symmetric, that is: 

              S SP =  (20) 

Such that, 

            
†  =S sim S S S S SO P OP O     =  (21) 

And in the case of fermions, it is required that A AP = − , such 
that 

 

 

           ( ) ( )†  =A sim A A A A A A AO P OP O O       = − − =  (21) 

Thus, the condition expressed in (19) that defines the symmetric 

observables simO  includes both cases. To obtain observables with a defined 
statistical identity, symmetrization operators S  (for the case of bosons) or 
antisymmetrization A  (for the case of fermions) should be applied to the 
observables  

            
†

†
B

F

S OS O
A OA O

=

=
 (22) 

The symmetric operators BO  form the bosonic algebra BO , while the 

symmetric operators FO  form the fermionic algebra FO . It should be clarified 

that the operators FO , although they have been the result of applying an 
antisymmetrization operator, turn out to be symmetric and not antisymmetric 
since, when permutation operators are applied to them, the possible eigenvalue  
( 1)−  appears squared. This is: 

             ( )2† 1F F FP O P O O=  =  (23) 

Thus, the expected mean values for bosonic or fermionic systems are 
obtained without the need to symmetrize or antisymmetrize the state. 
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antisymmetrization A  (for the case of fermions) should be applied to the 
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†

†
B

F

S OS O
A OA O

=

=
 (22) 

The symmetric operators BO  form the bosonic algebra BO , while the 

symmetric operators FO  form the fermionic algebra FO . It should be clarified 

that the operators FO , although they have been the result of applying an 
antisymmetrization operator, turn out to be symmetric and not antisymmetric 
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From this ontological perspective, the symmetrization postulate ceases 
to be an ad hoc addition and is ontologically grounded. When two or more 
clusters of identical possible properties are combined to form a single cluster, it 
is natural to expect that the resulting cluster will be symmetric. That is, the 
symmetric observables of the composite system do not distinguish between one 
subsystem and another. For example, consider two clusters 1h  and 2h  defined 

by different instances of identical observable algebras 1 2=O O  such that 
1 2h h , where  is the indistinguishability relation. The indices 1 and 2 here 

do not imply individuality and could be arbitrarily interchanged. These two 
clusters are combined into a new composite cluster Uh such that 1 2Uh h h=  , 

where   is the aggregation operation. The algebra 1 2 2 1U =  = O O O O O  will 

define the cluster Uh . Then, the restriction on the observables U UO O  
required by SPobs must be carried out, so that the observables 

( )1 2U ij i jij
O k O O=   are such that 1 2 2 1i j i jO O O O =  , that is, they are 

invariant under the permutation of the clusters 1h  and 2h  (Fortin & Lombardi 
2021). 
 

7. ALGEBRAIC VERSION OF THE MODEL 

Introduced the algebraic formalism along with the possible property ontology, 
the algebraic version of the toy model presented in section 5 is presented below. 

Consider a system U  with observables UO  belonging to the algebra UO . The 

state of the system U  will be the generic   =  (without symmetrizing 
or antisymmetrizing).  

The partition A (TPS A) 1 2 3 4U =   O O O O O  of the algebra UO  is 

introduced such that for each U UO O  it is the case that: 

 

 

            ( )1 2 3 4U ijkl i j k l
ijkl

O k O O O O=     (25) 

The observables 1O  belong to the subalgebra 1 UO O ; the observables 

2O  belong to the subalgebra 2 UO O ; the observables 3O  belong to the 

subalgebra 3 UO O  and the observables 4O  belong to the subalgebra 4 UO O . 

Finally, the subalgebras 1O , 2O , 3O  and 4O  define respectively the subsystems 

1S , 2S , 3S  and 4S  such that 1 2 3 4S S S S U   = . 
Consequently, the first-order permutation operators for this partition can 

be defined as follows: 
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†
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 (26) 

Partition B (beta) is introduced i iiU = O O O  for the algebra UO  such 

that for each U UO O  it holds that ( )i iiU mn m n
mn

O k O O=  . The observables 

iO  belong to the subalgebra iO , while the observables iiO  belong to the 

subalgebra iiO . The subalgebras iO  and iiO  define the subsystems iS  and iiS  
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respectively, so that  =i iiS S U . Finally, the algebra iO  has as subalgebras the 

already known 1O  and 2O  such that 1 2iS S S=  , i. e. i 1 2= O O O ; and iiO  has 

as subalgebras 3O  and 4O  such that 3 4iiS S S=  ; i. e. ii 3 4= O O O .    
The only permutation operator corresponding to this partition is: 

         ( )†
ii iii i U ii i mn m n

mn
P O P k O O− − =   (27) 

Since i 1 2= O O O  and ii 3 4= O O O , there is a correspondence between 

ii iP −  and one of the permutation operators of partition A. Namely 

           
( ) ( )ii i 3 4 1 2

3214 1432 1432 32
† †

1
†

4

mn m n ijkl i j k l
mn ijkli

ii i U ii i U

k O O k O O O O

P O P P P O P P− −

 =   

=

 
 (28) 

Thus, 

           1432 3214ii iP P P− =  (29) 

If it is assumed that the subsystems 1S , 2S , 3S  and 4S  are 
indistinguishable from each other, it should be the case, in order to satisfy IPobs  

             
†,U U U UO O P O P   =O  (30) 

If additionally it is assumed that 1S , 2S , 3S  and 4S  are fermions, and 
in order to ensure that the observables representing the system U  comply with 
the condition established in Eq. 30, the already defined antisymmetrization 

operator A  must be applied to the observables UO   

 

 

          
†,  F F F UO O A O A  =O  (31) 

Thus, the algebra FO  is obtained, which represents the system U  

composed of four fermions 1S , 2S , 3S  and 4S . The operation is analogous to 
applying the antisymmetrization operator A  to the state. The IPobs is satisfied 
by this algebra since 

           ( )

†
obs

2†

IP :    where  

1F F F

O' O O' P OP

P O P O O 

   

     

= =

=  =
 (32) 

Assuming now that the subsystems iS  and iiS  are also indistinguishable 
from each other, the following should be satisfied to meet IPobs 

           
†,U U U ii i U ii iO O P O P− −  =O  (33) 

If additionally it is assumed that iS  and iiS  are bosons, and in order to 
ensure that the observables representing the system U  comply with the 
condition established in eq. 33, a symmetrization operator S  should be applied 

to the observables UO . The symmetrization operator S  is defined as follows: 

           ( )1
2 ii iS I P −= +  (34) 

One would obtain an algebra of observables BÕ  such that 

           †,  B B B US O SÕ Õ  =Õ  (35) 
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However, if this operator were used, an undesirable result would be 

obtained, which is to obtain an algebra of observables BÕ  that would define U  

as a system different from the one previously defined by the algebra FO . We 
would no longer be talking about two different partitions of the same composite 
system but about two different composite systems. It would be the equivalent in 
the Hilbert space formalism of symmetrizing the state with respect exclusively 

to the operator ii iP − , but the symmetries and antisymmetries with respect to the 

operators P  would be lost.  
The way to find a suitable algebra of observables, which satisfies eq. 33 

without failing to satisfy eq. 30, is to define an algebra BO = FO  by making use 
of the same antisymmetrization operator A . The sought-after algebra is  

            
†,  B B B UO O AA O  =O  (36) 

This is perfectly possible, as it has been shown that the action of the 
operator A  should be understood as an antisymmetrization from partition A but 

as a symmetrization from partition B. Thus, the algebra BO  is obtained, which 

represents the system U  composed of two bosons iS  and iiS . The IPobs is 
satisfied by this algebra because 

            ( )

†
obs

2†

IP :    where  

1ii i B ii i B B

O' O O' P OP

P O P O O

   

     − −

= =

= =
 (37) 

As a first corollary, it is obtained that the same algebra BO = FO  obtained 
from the antisymmetrization operator A  defines the system U  as fermionic or 
bosonic not in absolute terms but with respect to a certain partition; that is, U  
is fermionic with respect to partition A and bosonic with respect to B. This 
invites a change in notation to highlight the relativity of statistical identity with 

 

 

respect to the partition. Instead of BO  it will be said B
O , instead of FO  it will be 

said F
O . A similar result had been obtained through the Hilbert space version 

of the model, in which for a total system represented by the same state vector 

A  we obtained both fermionic and bosonic identities. 
The second corollary is that the use of the antisymmetrization operator 

A  to obtain the algebra BO = FO  does not necessarily have to lead to the 
conclusion that the system U  is fundamentally fermionic and that partition A 
has ontological priority over B. Instead, the use of the antisymmetrization 
operator A  can be interpreted as a certain restriction on the algebra of 
observables, among the many possible ones, that defines a certain subalgebra 
and thereby defines a certain set of subsystems. This restriction is the analogue 
in the space of observables that from another point of view could be introduced 
from a restriction of the states accessible to the system. Specifically, the 
restriction lies in limiting the possible states of the system to those states that, 
being symmetric in partition B, become antisymmetric when viewed from 
partition A. 

This result emerges as a latent possibility only in the algebraic version. 

Namely, we have an algebra simO  composed of operators †
sim US O SO =  that 

perfectly adapts to the computation of mean values for both the fermionic and 
bosonic partitions and that could not be considered absolutely fermionic (since 
the symmetrization operator S ) nor absolutely bosonic since S  is built upon 
the permutation operators of the fermionic partition. 
 

8. CONCLUSIONS 

The adoption of a property ontology suggested by the algebraic formalism of 
quantum mechanics allows us to lift the caution that had forced us to suspend 
the partial conclusions derived from the Hilbert space version of the toy model. 
The ontological equivalence of the plurality of TPSs from an ontology in which 
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quantum (sub)systems cannot be considered objects with identity conditions 
that can be preserved when partitioned or when entering into composition, 
prevents the conventional interpretation that bases the statistical identity of a 
composite system on certain intrinsic properties of those subsystems defined by 
a privileged TPS, which delimits systems considered elementary. From this 
ontology, by enabling a notion of TPS-relativized separability, a notion of TPS-
relativized statistical identity is also made possible. 

Indistinguishable subsystems are no longer, in a strict sense, either 
fermions or bosons, but they are in a relative sense. That is, the statistical 
identity of the composite system no longer depends on the identity conditions 
of each numerically distinct subsystem considered individually, but is attributed 
to the composite system in relation to a specific TPS and to each subsystem in 
relation to the rest of the subsystems of the partition. Recall that adopting a 
property ontology implies assuming a top-down approach, where we start with 
the total system as a unique cluster of properties, attenuating the notion of 
elementality. The statistical identity of the total system will be determined by 
the mutual relational properties of the subsystems defined by each TPS. 

From the property ontology, it can finally be said: "this is a system of 
fermions with respect to partition A and it is a system of bosons with respect to 
partition B." By relativizing the fermionic or bosonic identity, a realistic 
interpretation of trans-statistical behavior is facilitated. In an ontology of 
individuals, the bosonic behavior of a system of fermions could only be 
apparent. However, from a property ontology, the trans-statistical behavior of a 
system that is fermionic or bosonic in a TPS-relative manner no longer depends 
solely on specific physical circumstances and can have an ontological 
foundation, linked to the conditions under which the qualitative identity of the 
systems is established. Moreover, cobosons turn out to be as real as the 
fermions that constitute them, and their ontological status is equated with that 
of conventional bosons. 
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