Sistema Macro & Micro robótico para aplicaciones médicas
PDF ()

Palabras clave

Sistemas toboticos
Aplicaciones medica

Resumen

Los robots para aplicaciones médicas en la macro y micro escala son la combinación de la tecnología de fabricación tradicional con tecnología de MEMS (micro electro-mechanical systems) sumadas con tecnologías como nano-tecnología, ingeniería biomédica y ciencia de los Materiales. Los robots en la macro escala para aplicación medica son dispositivos adaptados y desarrollados para hospitales traídos de tecnologías de aplicaciones industriales. Sin embargo, para minimizar la cirugía, el dolor y el sangrado en el paciente, los micros robots es una tecnología emergente que sería capaz de llegar con micro-cámaras, nano-sensores, y micro-manipuladores a áreas del cuerpo que no requerirán de cirugía sino utilizaran los orificios naturales del cuerpo. Este artículo se enfoca en una revisión bibliográfica de algunos Macro-Micro Robots Médicos que podrían ser parte del servicio de salud en un futuro cercano.

https://doi.org/10.18270/rt.v16i2.2524
PDF ()

Referencias

B Davies; A review of robotics in surgery; Proc Instn

Mech Engrs Vol 214 Part H; IMechE 2000

S J Harris, F Arambula-Cosio, Q Mei, R D Hibberd,

B L Davies, J E A Wickham, M S Nathan, B Kundu,

The Probot—an active robot for prostate resection;

Proceedings of the Institution of Mechanical Engineers,

Part H: Journal of Engineering in Medicine

Vol 211, Issue 4, pp. 317 – 325; 1997

Ashutosh Tewari, James Peabody, Richard Sarle,

Guruswami Balakrishnan, Ashok Hemal, Alok Shrivastava,

and Mani Menon; Technique of Da Vinci

Robot-Assisted Anatomic Radical Prostatectomy;

, ELSEVIER SCIENCE INC.

Microbotmedical, “Virob, Life in motion”; ©

Microbot Medical Inc., 2017; [En línea]. Disponible

en: http://www.microbotmedical.com/; [Accedido:

-may-2018]

Stephanie Lemmo Ham, Ehsan Atefi, Darcy Fyffe,

Hossein Tavana; Robotic Production of Cancer

Cell Spheroids with an Aqueous Two-phase

System for Drug Testing; . J. Vis. Exp. (98), e52754,

doi:10.3791/52754 (2015).

Shilpa Pandey, Nitisha Payal,Aarti Sharma; Robots

and Robotically Assisted Surgeries; International

Journal of Scientific Research Engineering & Technology

(IJSRET); Volume 1 Issue 5 pp 294-298

August 2012

Narendra Nathoo, M.D., Ph.D., M Cenk Çavuşoğlu,

Ph.D., Michael A. Vogelbaum, M.D., Ph.D., Gene

H. Barnett, M.D.; In Touch with Robotics: Neurosurgery

for the Future, Neurosurgery, Volume 56,

Issue 3, 1 March 2005, Pages 421–433.

McKesson; ROBOT-Rxm; © 2018 McKesson Corporation

[En línea]. Disponible en: http://www.

mckesson.com; [Accedido: 20-may-2018]

J.A. Osborne; ForHEalth Technologies Inc, USA,

IntelliFill iv; Disponible en: https://www.gerpac.eu/

intellifill-i-v; [Accedido: 20-may-2018]

Mary Inguanti; The IntelliFill iv for Health Technology;

PP&P, 2006.

Falk, Volkmar MD; Diegler, Anno MD, PhD; Walther,

Thomas MD; Autschbach, Rudiger MD, PhD; Mohr,

Friedrich W. MD, PhD; Developments in robotic

cardiac surgery; Current Opinion in Cardiology:

November 2000 - Volume 15 - Issue 6 - pp 378-387.

Jesús Moreno Sierra, Carlos Núñez Mora, Mª Isabel

Galante Romo, Sara Prieto Nogal, José López García

Asenjo1, y Angel Silmi Moyano.; Prostatectomía Radical

Asistida por Robot Da Vinci®: Un Año de Experiencia

en ll Hospital Clínico san Carlos; Laparoscopia y Robótica

Arch. Esp. Urol., 61, 3 (385-396), 2008.

Chris S. Karas, E. Antonio Chiocca; Neurosurgical

robotics: a review of brain and spine applications;

Journal of Robotic Surgery; March 2007, Volume 1,

Issue 1, pp 39–43.

Davinci Surgical System, Intuitive Surgical 2018;

Disponible en:; https://www.intuitivesurgical.com;

[Accedido: 20-may-2018]

Fink Densford; Intuitive Surgical wins FDA not for

daVinci X platform; Disponible en: http://www.

massdevice.com; [Accedido: 30-may-2017]

MinJun Kim, Anak Agung Julius, U Kei Cheang;

Microbiorobotics, Biologically Inspired Micro-scale

Robotic Systems, Elsevier, 2017.

Bradley J. Nelson, Ioannis K. Kaliakatsos, and Jake

J. Abbott; Microrobots for Minimally Invasive Medicine;

Institute of Robotics and Intelligent Systems,

ETH Zurich, Zurich, Switzerland; 2010.

Stefano Fusco, Franziska Ullrich, Juho Pokki,

George Chatzipirpiridis, Berna Ozkale, Kartik M

Sivaraman, Olgac¸ Ergeneman, Salvador Pane &

Bradley J Nelson; Microrobots: a new era in ocular

drug delivery; Institute of Robotics and Intelligent

Systems, ETH Zurich, Zurich, Switzerland; 2014.

Van Du Nguyen, Ji-Won Han, Young Jin Choi,

Sunghoon Cho, Shaohui Zheng, Seong Young Ko,

Jong-Oh Park, Sukho Park; Active tumor-therapeutic

liposomal bacteriobot combining a drug

(paclitaxel)-encapsulated liposome with targeting

bacteria (Salmonella Typhimurium); Sensors and

Actuators B 224 (2016) 217–224.

Chungseon Yu, Juhyun Kim, Hyunchul Choi,

Jongho Choi, Semi Jeong, Kyoungrae Cha, Jong-oh Park, Sukho Park; Novel electromagnetic actuation

system for three-dimensional locomotion and

drilling of intravascular microrobot; Sensors and

Actuators A 161 (2010) 297–304.

Sukho Park, Kyoungrae Cha, and Jongoh Park; Development

of Biomedical Microrobot for Intravascular

Therapy; International Journal of Advanced Robotic

Systems, Vol. 7, No. 1 (2010).

Zoltán Nagy, Raymond Oung, Jake J. Abbott, and

Bradley J. Nelson; Experimental Investigation of

Magnetic Self-Assembly for Swallowable Modular

Robots; IEEE/RSJ International Conference on Intelligent

Robots and Systems; 2008.

Bruce R. Donald, Christopher G. Levey, Igor

Paprotny, and Daniela Rus; Simultaneous Control

of Multiple MEMS Microrobots; Springer-Verlag

Berlin Heidelberg 2010.

Michel Wautelet; Scaling laws in the macro-, microand

nanoworlds; European Journal of Physics, Eur.

J. Phys. 22 (2001) 601–611.

E. M. Purcell; Life at Low Reynolds Number; Harvard

University, Cambridge, Massachusetts; 1976.

Jake J. Abbott, Zoltán Nagy, Felix Beyeler, and

Bradley J. Nelson; Robotics in the Small; IEEE Robotics

& Automation Magazine; 2007

Chytra Pawashe, Steven Floyd, and Metin Sitti;

Multiple magnetic microrobot control using electrostatic

anchoring; Applied Physics Letters 94, 2009.

Gwangjun Go, Hyunchul Choi, Semi Jeong, Cheong

Lee, Bang Ju Park, Seong Young Ko, Jong-Oh Park,

Sukho Park; Position-based magnetic field control

for an electromagnetic actuated microrobot system;

Sensors and Actuators A 205 (2014) 215–223.

Villangca, Mark Jayson; Palima, Darwin; Banas,

Andrew Rafael; Glückstad, Jesper; Light-driven

micro-tool equipped with a syringe function; Light:

Science & Applications; 2016.

Fumihito Arai, Toshiaki Endo, Ryuji Yamuchi, Toshio

Fukuda; 3D 6DOF Manipulation of Micro-object

Using Laser Trapped Microtool; Proceedings of the

IEEE International Conference on Robotics

and Automation; 2006.

Kathrin E. Peyer, Li Zhang and Bradley J. Nelson;

Bio-inspired magnetic swimming microrobots for

biomedical applications; Nanoscale, 2013, 5, 1259.

Li Zhang, Jake J. Abbott, Lixin Dong, Kathrin E.

Peyer, Bradley E. Kratochvil, Haixin Zhang, Christos

Bergeles, and Bradley J. Nelson; Characterizing the

Swimming Properties of Artificial Bacterial Flagella;

Nano Letters, 2009 Vol. 9, No. 10, 3663-3667.

K. Berk Yesin, Philipp Exner, Karl Vollmers, and Bradley

J. Nelson; Design and Control of In-Vivo Magnetic

Microrobots; Springer-Verlag Berlin Heidelberg 2005.

Orphée Cugat, Jérôme Delamare, and Gilbert Reyne;

Magnetic Micro-Actuators and Systems (Magmas);

IEEE Transactions on Magnetics, vol. 39, No. 5, 2003.

Michael P. Kummer,, Jake J. Abbott, Bradley E.

Kratochvil, Ruedi Borer, Ali Sengul and Bradley J.

Nelson; OctoMag: An Electromagnetic System for

-DOF Wireless Micromanipulation; IEEE Transactions

on Robotics, Vol. 26, No. 6, 2010.

Eric Diller, Joshua Giltinan, Guo Zhan Lum, Zhou

Ye, and Metin Sitti; Six-Degrees-of-Freedom Remote

Actuation of Magnetic Microrobots; SAGE Journals,

Vol 35, Issue 1-3, 2016.

Semi Jeong, Hyunchul Choi, Seong Young Ko,

Jong-Oh Park, and Sukho Park; Remote Controlled

Micro-robots using Electromagnetic Actuation

(EMA) Systems; The Fourth IEEE RAS/EMBS International

Conference on Biomedical Robotics and

Biomechatronics; 2012.

Hyunchul Choi, Kyoungrae Cha, Jongho Choi, Semi

Jeong, Seungmun Jeon, Gunhee Jang, Jong-oh Park,

Sukho Park; EMA system with gradient and uniform

saddle coils for 3D locomotion of microrobot;

Sensors and Actuators A 163 (2010) 410–417.

Sung Jun Park, Seung-Hwan Park, Sunghoon Cho,

Deok-Mi Kim, Yeonkyung Lee, Seong Young Ko,

Yeongjin Hong, Hyon E. Choy, Jung-Joon Min,

Jong-Oh Park & Sukho Park; New paradigm for

tumor theranostic methodology using bacteriabased

microrobot; Nature Scientific Reports; 2013

Castillo cesar, Cirugía de mínima invasividad 2013;

Disponible en: http://castillodelossantos.com; ;

[Accedido: 20-may-2018]

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.