Genetic variability and ocular phenotype roles in Stickler Syndrome

Authors

  • Gretta Pantaleon Florido Centro Provincial de Genetica de Matanzas
  • Tamara Juvier Riesgo

DOI:

https://doi.org/10.18270/rsb.v11i1.3641

Keywords:

Stickler Syndrome, vitreous type, COL2A1, COL11A1, COL9A1, COL9A2, arthro-ophthalmopathy.

Abstract

Background: Stickler Syndrome (SS) is an inherited progressive disorder of the collagen connective tissue. Manifestations include ocular, orofacial, skeletal and hearing defects. There are four types of SS and most of them has ocular defects such as high myopia, vitreoretinal degeneration, retinal detachment, and cataracts. It is the most commonly identified inherited cause of retinal detachment in childhood.

Objective: To expand the knowledge about the genes involved in SS and their clinical expression. To describe the role of ocular phenotypes in the diagnostic.

Review Methods: In this review, we consult a high-impact and recently published bibliography. It searches were performed in the computer data bases of PubMed, Hinari, SCIELO and Medline, as well as consulting other web sites including OMIM, ORPHANET, GeneMap, Genetests, Proteins and Gene. Descriptors ‘‘Síndrome de Stickler’’, ‘‘Stickler Syndrome gene’’, ‘‘ocular signs and Stickler Syndrome’’ and ‘‘Stickler Syndrome review’’ were used.

Results: Of the high numbers of articles found, 32 were selected (25 of them from 2016 to present), which reported 4 principal genes causing the syndrome: COL2A1, COL11A1, COL9A1, COL9A2. The COL2A1 and COL11A1 genes are responsible in 95% of patients with SS. Ocular defects are common in majority of SS types.

Conclusions: The diagnosis of SS is based on clinical-radiological criteria and although molecular confirmation is critical but evaluation of the vitreous can be a useful guide for efficient genetic analysis.

Downloads

Download data is not yet available.

References

Stickler GB, Belau PG, Farrell FJ Jones JD, Pugh DG, Steinberg AG, Ward LE. Hereditary progressive arthro-ophthalmopathy. Mayo Clin Proc. 1965; 40:433–55.

Zhou L, Xiao X, Li S, Jia X, Wang P, Sun W, Zhang F, Li J, Li T, Zhang Q. Phenotypic characterization of patients with early-onset high myopia due to mutations in COL2A1 or COL11A1: Why not Stickler syndrome? Mol Vis. 2018; 24:560-73.

Wang X, Jia X, Xiao X, Li S, Li J, Li Y, Wei Y, Liang X, Guo X. Mutation survey and genotype-phenotype analysis of COL2A1 and COL11A1 genes in 16 Chinese patients with Stickler syndrome. Mol Vis. 2016; 22: 697-704.

Wang DD, Gao FJ, Hu FY, Zhang SH, Xu P, Wu JH. Mutation spectrum of Stickler Syndrome Type I and genotype-phenotype analysis in East Asian population: a systematic review. BMC Med Genet. 2020;21(1):27.

DOI: 10.1186/s12881-020-0963-z

On Line Mendelian Inheritance in Man. OMIM [database on the internet] * Entry - 108300 - Stickler Syndrome, Type I; STL1. Baltimore US: Johns Hopkins University; June 4th 1986. [Updated Feb 13th 2013 – Consulted Oct 20th 2020]. Available in: https://omim.org/entry/108300#title

Huang L, Chen C, Wang Z, Sun L, Li S, Zhang T, Luo X, Ding X. Mutation spectrum and de novo mutation analysis in Stickler Syndrome patients with high myopia or retinal detachment. Genes (Basel). 2020;11(8):882. DOI: 10.3390/genes11080882

Ryan SJ, Schachat AP, Wilkinson CP, Hinton DR, Sadda SR, Wiedemann P. Retina 3-Volume Set. 5th Edition. Philadelphia-US: Saunders Elsevier; 2012.

Juvier-Riesgo T, Santiesteban-Freixas R, Bory-Vargas N. Enfermedades del vítreo. En Santiesteban-Freixas R. Oftalmologia Pediatrica. 2ª ed. Cuba: Editorial Ciencias Médicas; 2018. p 320-5.

Snead MP, McNinch AM, Poulson AV, Bearcroft P, Silverman B, Gomersall P, Parfect V, Richards AJ. Stickler syndrome, ocular-only variants and a key diagnostic role for the ophthalmologist. Eye (Lond). 2011; 25(11):1389-400.

DOI: 10.1038/eye.2011.201

On Line Mendelian Inheritance in Man. OMIM [database on the internet] * Entry - 120140 - Collagen,

Type II, Alpha – 1; COL2A1. Baltimore US: Johns Hopkins University; June 4th 1986. [Updated Jan 3th 2018 – Consulted Oct 20th 2020]. Available in: https://www.omim.org/entry/120140

Kondo H, Matsushita I, Nagata T, Hayashi T, Kakinoki M, Uchio E, Kondo M, Ohji M, Kusaka S. Novel mutations in the COL2A1 gene in Japanese patients with Stickler syndrome. Hum Genome Var. 2016; 3:16018.

DOI: 10.1038/hgv.2016.18

On Line Mendelian Inheritance in Man. OMIM [database on the internet] * Entry - 609508 - Stickler Syndrome, Type I, Nonsyndromic Ocular. Baltimore US: Johns Hopkins University; August 29th 2005. [Updated April 8th 2013 –Consulted Oct 20th 2020]. Available in: https://omim.org/entry/609508

On Line Mendelian Inheritance in Man. OMIM [database on the internet] * Entry - 143200 - Wagner Vitreoretinophaty; WGVRP. Baltimore US: Johns Hopkins University; June 4th 1986. [Updated April 8th 2013 – Consulted Oct 20th 2020]. Available in: https://www.omim.org/entry/143200

Juvier-Riesgo T. Distrofias de retina en edad pediátrica. En Santiesteban-Freixas R. Oftalmologia Pediatrica. 2ª ed. Cuba: Editorial Ciencias Médicas; 2018. P 349-66.

On Line Mendelian Inheritance in Man. OMIM [database on the internet] * Entry - 604841 - Stickler Syndrome, Type II; STL2. Baltimore US: Johns Hopkins University; April 16th 2000. [Updated April 10th 2007 – Consulted Oct 20th 2020]. Available in: https://www.omim.org/entry/604841

On Line Mendelian Inheritance in Man. OMIM [database on the internet] * Entry - 120280 - Collagen, Type XI, Alpha-1; COL11A1. Baltimore US: Johns Hopkins University; September 29th 1987. [Updated May 24th 2020 – Consulted Oct 20th 2020]. Available in: https://www.omim.org/entry/120280

Kohmoto T, Tsuji A, Morita K, Naruto T, Masuda K, Kashimada K, Enomoto K, Morio T, Harada H, Imoto I. A novel COL11A1 missense mutation in siblings with non-ocular Stickler syndrome. Hum Genome Var. 2016; 3:16003.

DOI: 10.1038/hgv.2016.3

Vogiatzi MG, Li D, Tian L, Garifallou JP, Kim CE, Hakonarson H, Levine MA. A novel dominant COL11A1 mutation in a child with Stickler syndrome type II is associated with recurrent fractures. Osteoporos Int. 2018; 29(1):247-51.

DOI: 10.1007/s00198-017-4229-3

Huang X, Lin Y, Chen C, Zhu Y, Gao H, Li T, Liu B, Lyu C, Huang Y, Wu Q, Li H, Jin C, Liang X, Lu L. Targeted nextgeneration sequencing identifies two novel COL2A1 gene mutations in Stickler syndrome with bilateral retinal detachment. Int J Mol Med. 2018; 42(4):1819-26. DOI: 10.3892/ijmm.2018.3752

Higuchi Y, Hasegawa K, Yamashita M, Tanaka H, Tsukahara H. A novel mutation in the COL2A1 gene in a patient with Stickler syndrome type 1: a case report and review of the literature. J Med Case Rep. 2017; 11(1):237.

DOI: 10.1186/s13256-017-1396-y

On Line Mendelian Inheritance in Man. OMIM [database on the internet] * Entry - 614134 - Stickler Syndrome, Type IV; STL4. Baltimore US: Johns Hopkins University; August 4th 2011. [Updated Dec 5th 2014 – Consulted Oct 20th 2020]. Available in: https://omim.org/entry/614134

On Line Mendelian Inheritance in Man. OMIM [database on the internet] * Entry - 120210 - Collagen, Type IX, Alpha-1; COL9A1. Baltimore US: Johns Hopkins University; June 4th 1986. [Updated Dec 5th 2014 – Consulted Oct 20th 2020]. Available in: https://omim.org/entry/120210

Van Camp G, Snoeckx RL, Hilgert N, van den Ende J, Fukuoka H, Wagatsuma M, Suzuki H, Smets RM, Vanhoenacker F, Declau F, Van de Heyning P, Usami S. A new autosomal recessive form of Stickler syndrome is caused by a mutation in the COL9A1 gene. Am J Hum Genet. 2006; 79(3):449-57. DOI: 10.1086/506478

Nikopoulos K, Schrauwen I, Simon M, Collin RW, Veckeneer M, Keymolen K, Van Camp G, Cremers FP, van den Born LI. Autosomal recessive Stickler syndrome in two families is caused by mutations in the COL9A1 gene. Invest. Ophthal. Vis. Sci. 2011; 52(7):4774-9. DOI: 10.1167/iovs.10-7128

On Line Mendelian Inheritance in Man. OMIM [database on the internet] * Entry - 614284 - Stickler Syndrome, Type V; STL5. Baltimore US: Johns Hopkins University; Oct 7th 2011. [Consulted Oct 20th 2020]. Available in:

https://www.omim.org/entry/614284

On Line Mendelian Inheritance in Man. OMIM [database on the internet] * Entry - 120260 - Collagen, Type IX, Alpha-2; COL9A2. Baltimore US: Johns Hopkins University; June 26th 1987. [Updated July 23th 2017 – Consulted Oct 20th 2020]. Available in: https://omim.org/entry/120260

Baker S, Booth C, Fillman C, Shapiro M, Blair MP, Hyland JC, Ala-Kokko L. A loss of function mutation in the COL9A2 gene cause autosomal recessive Stickler syndrome. Am. J. Med. Genet. 2011; 155A (7): 1668-72.

DOI: 10.1002/ajmg.a.34071

On Line Mendelian Inheritance in Man. OMIM [database on the internet] * Entry - 607163 – Lysyl Oxidase-Like 3; LOXL3. Baltimore US: Johns Hopkins University; August 23th 2002. [Updated Feb 24th 2016 – Consulted Oct 20th 2020]. Available in: https://omim.org/entry/607163

Laurentino TS, Soares RDS, Marie SKN, Oba-Shinjo SM. LOXL3 function beyond amino oxidase and role in pathologies, including cancer. Int J Mol Sci. 2019; 20(14):3587. https://doi:10.3390/ijms20143587

Chan TK, Alkaabi MK, ElBarky AM, El-Hattab AW. LOXL3 novel mutation causing a rare form of

autosomal recessive Stickler syndrome. Clin Genet. 2019; 95(2):325-8. https://doi:10.1111/cge.13465.

Khan MFJ, Little J, Mossey PA, Steegers-Theunissen RPM, Bonsi M, Bassi Andreasi R, Rubini M. Association between a common missense variant in LOXL3 gene and the risk of non-syndromic cleft palate. Congenit Anom (Kyoto). 2018; 58(4):136-40. DOI: 10.1111/cga.12288

Stickler G, Hughes W y Houchin P. Clinical features of hereditary progressive arthro-ophtalmopathy (Stickler syndrome): A survey. Genet Med. 2001; 3(3):192-6. https://doi.org/10.1097/00125817-200105000-00008

Published

2021-11-29

How to Cite

Pantaleon Florido, G., & Juvier Riesgo, T. (2021). Genetic variability and ocular phenotype roles in Stickler Syndrome. Revista Salud Bosque, 11(1). https://doi.org/10.18270/rsb.v11i1.3641

Issue

Section

Review articles: