La relevancia de la invariancia frente a inversión temporal para la flecha del tiempo
PDF

Palabras clave

arrow of time
time-reversal invariance
space-time
time-orientability
global time
time symmetry
four-dimensional energy flow flecha del tiempo
invariancia frente a inversión temporal
espacio-tiempo
orientabilidad temporal
tiempo global
simetría temporal
flujo tetradimensional de energía

Cómo citar

Lombardi, O., & Vanni, L. (2022). La relevancia de la invariancia frente a inversión temporal para la flecha del tiempo. Revista Colombiana De Filosofía De La Ciencia, 22(44). https://doi.org/10.18270/rcfc.v22i44.3524

Resumen

En este artículo se argumenta que la existencia de leyes invariantes frente a inversión temporal no es condición indispensable para la existencia de la flecha del tiempo. Esta última puede definirse como una propiedad global y geométrica del espacio-tiempo que no se basa en consideraciones entrópicas ni requiere de la existencia de leyes no invariantes frente a la inversión temporal. A su vez, si el espacio-tiempo cumple ciertas condiciones, la flecha global se traslada a los contextos locales como un flujo tetradimensional de energía que apunta en la misma dirección temporal en todos los puntos espacio-temporales.

https://doi.org/10.18270/rcfc.v22i44.3524
PDF

Citas

Aiello, Matías, Castagnino, Mario & Lombardi, Olimpia. “The arrow of time: From universe time-asymmetry to local irreversible processes”. Foundations of Physics 38 (2008): 257-292.

Albert, David. Time and chance. Cambridge, MA: Harvard University Press, 2000.

Callender, Craig. “Is time ‘handed’ in a quantum world?”. Proceedings of the Aristotelian Society 100 (2000): 247-269.

Castagnino, Mario, Gadella, Manuel & Lombardi, Olimpia. “Time’s arrow and irreversibility in time-asymmetric quantum mechanics”. International Studies in the Philosophy of Science 19 (2005): 223-243.

Castagnino, Mario, Lara, Luis & Lombardi, Olimpia. “The cosmological origin of time-asymmetry”. Classical and Quantum Gravity 20 (2003a): 369-391.

Castagnino, Mario, Lara, Luis & Lombardi, Olimpia. “The direction of time: From the global arrow to the local arrow”. International Journal of Theoretical Physics 42 (2003b): 2487-2504.

Castagnino, Mario & Lombardi, Olimpia. “The generic nature of the global and non-entropic arrow of time and the double role of the energy-momentum tensor”. Journal of Physics 37 (2004): 4445-4463.

Castagnino, Mario & Lombardi, Olimpia. “A global and non entropic approach to the problem of the arrow of time”. Spacetime physics research trends. Horizons in world physics, editado por Albert Reimer. Nueva York: Nova Science, 2005, pp. 73-108.

Castagnino, Mario & Lombardi, Olimpia. “The global non-entropic arrow of time: From global geometrical asymmetry to local energy flow”. Synthese 169 (2009): 1-25.

Castagnino, Mario, Lombardi, Olimpia & Lara, Luis. “The global arrow of time as a geometrical property of the universe”. Foundations of Physics 33 (2003): 877-912.

Costa de Beauregard, Oliver. “CPT invariance and interpretation of quantum mechanics”. Foundations of Physics 10 (1980): 513-530.

Curiel, Eric. “A primer on energy conditions”. Towards a theory of spacetime theories, editado por Dennis Lehmkuhl, Gregor Schiemann y Erhard Scholz. Basel: Springer, 2017, pp. 43-104.

Dürr, Detlef & Teufel, Stefan. Bohmian mechanics. The physics and mathematics of quantum theory. Dordrecht: Springer, 2009.

Earman, John. “An attempt to add a little direction to «the problem of the direction of time»”. Philosophy of Science 41 (1974): 15-47.

_______. “The problem of irreversibility”. Proceedings of the Biennial Meeting of the Philosophy of Science Association 1986, Vol. 2, editado por Andrea Woody. Chicago: Philosophy of Science Association, 1986, pp. 226-233.

_______. “What time reversal invariance is and why it matters”. International Studies in the Philosophy of Science 16 (2002): 245-264.

Earman, John & Norton, John. “What price spacetime substantivalism? The hole story”. The British Journal for the Philosophy of Science 38 (1987): 515-525.

Ehrenfest, Paul & Ehrenfest, Tatiana. The conceptual foundations of the statistical approach in mechanics, 1912. Ithaca: Cornell University Press, 1959.

Gasiorowicz, Stephen. Elementary particle physics. Nueva York: John Wiley and Sons, 1966.

Hawking, Stephen & Ellis, George. The large scale structure of space-time. Cambridge: Cambridge University Press, 1973.

López, Cristian. “Three facets of time-reversal symmetry”. European Journal for Philosophy of Science 11 (2021): 1-19.

López, Cristian & Lombardi, Olimpia. “Space-time symmetries in quantum mechanics”. Quantum worlds. Perspectives on the ontology of quantum mechanics, editado por Olimpia Lombardi, Sebastian Fortin, Cristian López & Federico Holik. Cambridge: Cambridge University Press, 2019, pp. 269-293.

Matthews, Geoffrey. “Time’s arrow and the structure of spacetime”. Philosophy of Science 46 (1979): 82-97.

North, Jill. “Two views on time reversal”. Philosophy of Science 75 (2009): 201-223.

Peterson, Daniel. “Prospect for a new account of time reversal”. Studies in History and Philosophy of Modern Physics 49 (2015): 42-56.

Popper, Karl. Nature 177 (1956a): 538.

_______. Nature 178 (1956b): 382.

_______. Nature 179 (1957): 1297.

_______. Nature 181 (1958): 402.

_______. Nature 207 (1965): 233.

_______. Nature 213 (1967a): 320.

_______. Nature 214 (1967b): 322.

Price, Huw. Time’s arrow and Archimedes’ point: New directions for the physics of time. Oxford: Oxford University Press, 1996.

Racah, Giulio. “Sulla simmetria tra particelle e antiparticelle”. Il Nuovo Cimento 14 (1937): 322-326.

Roberts, Bryan W. “Three myths about time reversal invariance”. Philosophy of Science 84 (2017): 315-334.

Sachs, Robert G. The physics of time reversal. Londres: University Chicago Press, 1987.

Sakurai, Jun John. Modern quantum mechanics. Revised edition. Reading, MA: Addison- Wesley, 1994.

Savitt, Steven F. “The direction of time”. The British Journal for the Philosophy of Science 47 (1996): 347-370.

Sklar, Lawrence. Physics and chance. Cambridge: Cambridge University Press, 1993.

Schutz, Bernard F. Geometrical methods of mathematical physics. Cambridge: Cambridge University Press, 1980.

Visser, Matt. Lorentzian wormholes. Berlin: Springer-Verlag, 1996.

Watanabe, Satosi. “Symmetry of physical laws. Part 3: Prediction and retrodiction”. Reviews of Modern Physics 27 (1955): 179-186.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Descargas

Los datos de descargas todavía no están disponibles.