La relación entre química y física: isomerismo óptico y la paradoja de Hund

Autores/as

  • Sebastían Fortín Universidad de Buenos Aires
  • Juan Camilo Martínez González Universidad Nacional de Tres de Febrero

DOI:

https://doi.org/10.18270/rcfc.v13i26.1649

Resumen

En el presente trabajo abordamos el problema de la relación entre química y física focalizándonos
en la cuestión del isomerismo óptico y la llamada ‘paradoja de Hund’, que
apunta a la dificultad de dar cuenta de la quiralidad mediante la mecánica cuántica. En
particular, presentamos la solución a la paradoja propuesta desde la teoría de la decoherencia.
El objetivo del trabajo consiste en cuestionar esta solución a la luz de una
interpretación precisa del concepto de decoherencia. Sobre esta base argumentamos
que una respuesta satisfactoria a la paradoja de Hund sólo puede brindarse desde una
adecuada interpretación de la mecánica cuántica, que logre sortear los desafíos conceptuales
de la teoría.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Adler, S. “Why decoherence has not solved the measurement problem: A

response to P. W. Anderson”. Studies in History and Philosophy of Modern

Physics 34 (2003): 135-142.

Ardenghi, J. S., Fortin, S. & Lombardi, O. “The conceptual meaning of

reduced states: decoherence and interpretation”. 14th Congress of Logic,

Methodology and Philosophy of Science. Nancy, 2011.

Bacciagaluppi, G. “The role of decoherence in quantum mechanics”. The

Stanford Encyclopedia of Philosophy. Ed. E. N. Zalta. 2008.

stanford.edu/ archives/fall2008/entries/qm-decoherence/>.

Bacciagaluppi, G. & Hemmo, M. “Making sense of approximate decoherence”.

Proceedings of the Philosophy of Science Association 1 (1994): 345-354.

—.. “Modal interpretations, decoherence and measurements”. Studies in

History and Philosophy of Modern Physics 27 (1996): 239-277.

Bader, R. Atoms in Molecules: A Quantum Theory. Oxford: Oxford University

Press, 1994.

Ballentine, L. Quantum Mechanics: A Modern Development. Singapore: World

Scientific, 1998.

Berlin, Y. A., Burin, A. L. & Goldanskii, V. V. “The Hund paradox and

stabilization of molecular chiral states”. Zeitschrift für Physik D 37 (1996):

-339.

Bub, J. Interpreting the Quantum World. Cambridge: Cambridge University

Press, 1997.

D’Espagnat, B. “An elementary note about mixtures”. Preludes in Theoretical

Physics. Eds. A. De-Shalit, H. Feshbach & L. van Hove. Amsterdam:

North-Holland, 1966.

D’Espagnat, B. Conceptual Foundations of Quantum Mechanics. Reading,

MA: Benjamin, 1976.

Dirac, P. A. M. “Quantum mechanics of many-electron systems”. Proceedings

of the Royal Society of London A 123 (1929): 714-33.

Elby, A. “The ‘decoherence’ approach to the measurement problem in

quantum mechanics”. Proceedings of the 1994 Biennial Meeting of the Philosophy

of Science Association 1 (1994): 355-365.

Harris, R. A. & Stodolsky, L. “Time dependence of optical activity”. The

Journal of Chemical Physics, 74 (1981): 2145-2155.

Healey, R. A. “Dissipating the quantum measurement problem”. Topoi 14

(1995): 55-65.

Heisenberg, W. “The physical content of quantum kinematics and mechanics”.

Quantum Theory and Measurement. Eds. J. A. Wheeler & W. H.

Zurek. Princeton: Princeton University Press, 1983. Trad. de “Über den

anschaulichen Inhalt der quantentheoretischer Kinematic und Mechanik”.

Zeitschrift für Physik 43 (1927): 172-198.

Hendry, R. F. “The physicists, the chemists, and the pragmatics of explanation”.

Philosophy of Science 71 (2004): 1048-59.

—. “Two conceptions of the chemical bond”. Philosophy of Science 75 (2008):

-920.

—. “Ontological reduction and molecular structure”. Studies in History and

Philosophy of Modern Physics 41 (2010): 183-191.

Hettema, H. “Explanation and theory foundation in quantum chemistry”.

Foundatios of Chemistry 11 (2009): 145-174.

—.Reducing Chemistry to Physics. Limits, Models, Consecuences. Groningen:

University of Groningen, 2012.

Hund. F. “Zur Deutung der Molekelspektren. III”. Zeitschrift für Physik, 43,

(1927) 805-826.

Joos, E. “Elements of environmental decoherence”. Decoherence: Theoretical,

Experimental, and Conceptual Problems, Lecture Notes in Physics, Vol. 538.

Eds. P. Blanchard, D. Giulini, E. Joos, C. Kiefer & I. O. Stamatescu.

Heidelberg-Berlin: Springer, (2000).

Landau, L. D. & Lifshitz, E. M. Mecánica Cuántica No-Relativista. Barcelona:

Reverté, 1972.

Leggett, A. J. “Reflections on the quantum measurement paradox”. Quantum

Implications. Eds. B. J. Hiley & F. D. Peat. Londres: Routledge and Kegan

Paul, 1987.

Lombardi, O & Castagnino, M. “A modal-Hamiltonian interpretation of

quantum mechanics”. Studies in History and Philosophy of Modern Physics

(2008a): 380-443.

—. “The role of the Hamiltonian in the interpretation of quantum mechanics”.

Journal of Physics. Conferences Series. 2008b, # 012014. Institute of

Physics and IOP Publishing Limited 28.

—. “Matters are not so clear on the physical side”. Foundations of Chemistry

(2010): 159-166.

Lombardi, O., Fortin, S., Castagnino M. & Ardenghi, J. S. “Compatibility

between environment-induced decoherence and the modal-Hamiltonian

interpretation of quantum mechanics”. Philosophy of Science 78 (2011):

-1036.

Lombardi, O. & Labarca, M. “The ontological autonomy of the chemical

world”. Foundations of Chemistry 7 (2005): 125-148.

—. “The ontological autonomy of the chemical world: A response to

Needham”. Foundations of Chemistry 8 (2006): 81-92.

Nagel, E. The Structure of Science. New York: Harcourt, Brace & World, 1961.

Paz, J. P. & Zurek, W. H. “Environment-induced decoherence and the transition

from quantum to classical”. Fundamentals of Quantum Information.

Lecture Notes in Physics, Vol. 587. Ed. D. Heiss. Heidelberg-Berlin: Springer,

(los números de página está tomados de arXiv:quant-ph/0010011).

Primas, H. Chemistry, Quantum Mechanics and Reductionism. Berlin: Springer,

Scerri, E. R. “Realism, reduction and the ‘intermediate position”. Of Minds

and Molecules. New Philosophical Perspectives on Chemistry. Eds. N. Bhushan

& S. Rosenfeld. New York: Oxford University Press, 2000.

—. “Just how ab initio is ab initio quantum chemistry?”. Foundations of

Chemistry 6 (2004): 93-116.

—. “Normative and descriptive philosophy of science and the role of

chemistry”. Philosophy of Chemistry: Synthesis of a New Discipline. Eds.

D. Baird, E. Scerri & L. McIntyre. Dordrecht: Springer, 2006. 119-128.

Boston Studies in the Philosophy of Science 242.

—. “Editorial 37”. Foundations of Chemistry 13 (2011): 1-7.

Scerri, E. R. & McIntyre, L. “The case for the philosophy of chemistry”.

Synthese 111 (1997): 213-232.

Schlosshauer, M. Decoherence and the Quantum-to-Classical Transition. Berlin:

Springer, 2007.

Sutcliffe, B. T. & Wolley, R. G. “A comment on Editorial 37”. Foundations of

Chemistry, 13 (2011): 93-95.

—.. “Atoms and molecules in classical chemistry and quantum mechanics”.

Handbook of Philosophy of Science. Vol. 6, Philosophy of Chemistry. Eds. R.

F. Hendry & A Woody. Oxford: Elsevier, 2012.

Szabo, A & Ostlund, N. S. Modern Quantum Chemistry: Introduction to

Advanced Electronic Structure Theory. Mineola, NY: Dover Publications,

Van Brakel, J. Philosophy of Chemistry. Between the Manifest and the Scientific

Image. Leuven: Leuven University Press, 2000.

Vemulapalli, G. K. & Byerly, H. “Remnants of reductionism”. Foundations of

Chemistry 1 (1999): 17-41.

Wolley, R. G. “Quantum theory and molecular structure”. Advances in Physics

(1976): 27-52.

—. “Must a molecule have a shape?”. Journal of the American Chemical Society

(1978): 1073-1078.

—. “Is there a quantum definition of a molecule?”. Journal of Mathematical

Chemistry 23 (1998): 3-12.

Zurek, W. H. “Pointer basis of quantum apparatus: into what mixture does

the wave packet collapse?”. Physical Review D 24 (1981): 1516-1525.

—. “Environment-induced superselection rules”. Physical Review D 26 (1982):

-1880.

—. “Decoherence and the transition from quantum to classical”. Physics Today

(1991): 36-44.

—. “Preferred states, predictability, classicality and the environment-induced

decoherence”. Progress of Theoretical Physics 89 (1993): 281-312.

—. “Decoherence, einselection, and the quantum origins of the classical”.

Reviews of Modern Physics 75 (2003): 715-776.

Descargas

Publicado

2016-04-27

Cómo citar

Fortín, S., & Martínez González, J. C. (2016). La relación entre química y física: isomerismo óptico y la paradoja de Hund. Revista Colombiana De Filosofía De La Ciencia, 13(26). https://doi.org/10.18270/rcfc.v13i26.1649