Explicaciones Geométrico-Diagramáticas en Física desde una Perspectiva Inferencial
PDF

Palabras clave

Explicación Geométrica
Inferencia Diagramática

Cómo citar

Anta, J. (2019). Explicaciones Geométrico-Diagramáticas en Física desde una Perspectiva Inferencial. Revista Colombiana De Filosofía De La Ciencia, 19(38). https://doi.org/10.18270/rcfc.v19i38.2297

Resumen

El primer objetivo de este artículo es mostrar que explicaciones genuinamente geométricas/matemáticas e intrínsecamente diagramáticas de fenómenos físicos no solo son posibles en la práctica científica, sino que además comportan un potencial epistémico que sus contrapartes simbólico-verbales carecen. Como ejemplo representativo utilizaremos la metodología geométrica de John Wheeler (1963) para calcular cantidades físicas en una reacción nuclear. Como segundo objetivo pretendemos analizar, desde un marco inferencial, la garantía epistémica de este tipo de explicaciones en términos de dependencia sintáctica y semántica del contenido  lo inferido en las premisas, lo cual denominaremos criterio de validez inferencial (CVI).

https://doi.org/10.18270/rcfc.v19i38.2297
PDF

Referencias

Ayer, A. J., 1936. Language, Truth and Logic. London: V. Gollancz.

Brown, J., 1999, Philosophy of Mathematics: an introduction to the world of proofs and pictures, London: Routledge.

Barwise, J. and J. Etchemendy, 1996, “Visual information and valid reasoning”, in Logical Reasoning with Diagrams, G. Allwein and J.

Barwise (eds) Oxford: Oxford University Press.

Bueno, O. and M. Colyvan, 2011, “An Inferential Conception of the Application of Mathematics”, Noûs, 45: 345–374.

Bueno, O. and S. French, 2012, “Can Mathematics Explain Physical Phenomena?”, British Journal for the Philosophy of Science, 63 (1): 85–113.

Giaquinto, M., 1994, “Epistemology of visual thinking in elementary real analysis”, British Journal for the Philosophy of Science, 45: 789–813.

–––, 2007, Visual Thinking in Mathematics, Oxford: Oxford University Press.

Hafner, J. and P. Mancosu, 2005, “The Varieties of Mathematical Explanation”, in P. Mancosu et al. (eds.), Visualization, Explanation and Reasoning Styles in Mathematics, Berlin: Springer, 215–250.

Jones, N., 2014, “Bowtie Structures, Pathway Diagrams and Topological Explanation”, Synthese, 79: 1135–1155.

Lange, M., 2016, “Explanatory Proofs and Beautiful Proofs”, Journal of Humanistic Mathematics, 6 (1): 8–51.

Lyon, A., 2012, “Mathematical Explanations of Empirical Facts, and Mathematical Realism”, Australasian Journal of Philosophy, 90 (3): 559–578.

Mancosu, P., 2005, “Visualization in Logic and Mathematics”, in P. Mancosu, K. Jørgensen and S. Pedersen (eds), Visualization, Explanation and Reasoning Styles in Mathematics, Dordrecht: Springer.

Manders, K., 2008, The Euclidean Diagram. In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford University Press. pp. 80--133.

Miller, N., 2007, Euclid and His Twentieth Century Rivals: Diagrams in the Logic of Euclidean Geometry. Center for the Study of Language and Inf.

Molinini, D., 2016. The Epistemological Import of Euclidean Diagrams. Kairos. Journal of Philosophy and Science 16 (1):124-141.

Needham, T., 1997, Visual Complex Analysis, Oxford: Clarendon Press.

Norman, J., 2004. Can diagrams have epistemic value? The case of Euclid. In A. Blackwell, K. Marriott & A. Shimojima (eds.), Diagrammatic Representation and Inference. Springer. pp. 14--17.

Peirce, C.S. 1931,. Collected Papers of Charles Sanders Peirce. Cambridge: Harvard University Press.

Perini, L., 2005. Explanation in two dimensions: Diagrams and biological explanation. Biology and Philosophy 20 (2-3):257-269.

Saatsi, J., 2018, “On Explanations from Geometry of Motion”, The British Journal for the Philosophy of Science, 69 (1): 253–273.

Shin, S., 2004, Heterogeneous reasoning and its logic. Bulletin of Symbolic Logic 10 (1):86-106.

–––, 1991. Valid Reasoning and Visual Representation. Dissertation, Stanford University

Shimojima, A, 1996,. Operational constraints in diagrammatic reasoning. In Gerard Allwein & Jon Barwise (eds.), Logical Reasoning with Diagrams. Oxford University Press.

–––,2004. Inferential and expressive capacities of graphical representations: Survey and some generalizations. In A. Blackwell, K. Marriott & A. Shimojima (eds.), Diagrammatic Representation and Inference. Springer. pp. 18--21.

Steiner, M., 1978a, “Mathematical Explanation”, Philosophical Studies, 34: 135–151.

Tennant, N. 1986,. The Withering Away of Formal Semantics? Mind and Language 1 (4):302-318.

Wheeler, J. A., y Taylor, E. F., 1963, Spacetime Physics, A Series of Books in Physics. W. H. Freeman and Company.

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.

Descargas

La descarga de datos todavía no está disponible.