Neurociencia y comportamiento del consumidor
PDF

Cómo citar

Barrera Rodríguez, A. M., Duque Hurtado, P. L., & Merchán Villegas , V. L. . (2022). Neurociencia y comportamiento del consumidor: análisis estadístico de su evolución y tendencias en su investigación. Cuadernos Latinoamericanos De Administración, 18(35). https://doi.org/10.18270/cuaderlam.v18i35.3855

Resumen

La neurociencia del consumidor examina el comportamiento del cerebro ante los diferentes estímulos que producen las marcas con el fin de poder determinar cuáles son los principales factores que llevan a una persona a consumir un producto. El presente estudio realiza un análisis bibliométrico de la literatura de la neurociencia y el comportamiento del consumidor en el que se identificaron los países, autores, revistas e instituciones más influyentes, su estructura y las líneas futuras de investigación. La revisión se efectuó a partir de un análisis bibliométrico y de redes de documentos publicados en la base de datos Scopus entre los años 2007 y 2021. Se realizó un mapeo científico a 178 documentos y a partir del análisis de redes se identificaron tres perspectivas o clústeres de investigación: la publicidad y su impacto emocional; las marcas y su persuasión al consumidor; y las emociones y su influencia en el cerebro y el comportamiento del consumidor. Por último, se presenta la agenda para futuras investigaciones.

https://doi.org/10.18270/cuaderlam.v18i35.3855
PDF

Citas

Acevedo, J. P., Robledo, S. y Sepúlveda, M. Z. (2020). Subáreas de internacionalización de emprendimientos: una revisión bibliográfica. Económicas CUC, 42(1), 249–268. https://doi.org/10.17981/econcuc.42.1.2021.org.7

Alsmadi, S., & Hailat, K. (2021). Neuromarketing and Improved Understanding of Consumer Behaviour Through Brain-Based Neuro Activity. Journal of Information & Knowledge Management, 20(02), 2150020. https://doi.org/10.1142/s0219649221500209

Amin, C. R., Hasin, M. F., Leon, T. S., Aurko, A. B., Tamanna, T., Rahman, M. A., & Parvez, M. Z. (2020). Consumer Behavior Analysis using EEG Signals for Neuromarketing Application. 2020 IEEE Symposium Series on Computational Intelligence (SSCI), 2061–2066. https://doi.org/10.1109/SSCI47803.2020.9308358

Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-Rool for Comprehensive Science Mapping Analysis. Journal of informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Aria, M., Misuraca, M., & Spano, M. (2020). Mapping the Evolution of Social Research and Data Science on 30 Years of Social Indicators Research. Social Indicators Research, 149(3), 803–831. https://doi.org/10.1007/s11205-020-02281-3

Ariely, D., & Berns, G. S. (2010). Neuromarketing: The Hope and Hype of Neuroimaging in Business. Nature Reviews. Neuroscience, 11(4), 284–292. https://doi.org/10.1038/nrn2795

Avinash, T., Dikshant, L., & Seema, S. (2018). Methods of Neuromarketing and Implication of the Frontal Theta Asymmetry Induced Due to Musical Stimulus as Choice Modeling. Procedia Computer Science, 132, 55–67. https://doi.org/10.1016/j.procs.2018.05.059

Baldo, D., Parikh, H., Piu, Y., & Müller, K.-M. (2015). Brain Waves Predict Success of New Fashion Products: A Practical Application for the Footwear Retailing Industry. Journal of Creating Value, 1(1), 61–71. https://doi.org/10.1177/2394964315569625

Baños-González, M., Baraybar-Fernández, A., & Rajas-Fernández, M. (2020). The Application of Neuromarketing Techniques in the Spanish Advertising Industry: Weaknesses and Opportunities for Development. Frontiers in Psychology, 11, 2175. https://doi.org/10.3389/fpsyg.2020.02175

Bar-Ilan, J. (2008). Which h-Index? — A Comparison of WoS, Scopus and Google Scholar. Scientometrics, 74(2), 257–271. https://doi.org/10.1007/s11192-008-0216-y

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media. https://gephi.org/users/publications/

Berčík, J., Horská, E., Wang, R. W. Y., & Chen, Y.-C. (2016). The Impact of Parameters of Store Illumination on Food Shopper Response. Appetite, 106, 101–109. https://doi.org/10.1016/j.appet.2016.04.010

Bond, M., Zawacki-Richter, O., & Nichols, M. (2019). Revisiting Five Decades of Educational Technology Research: A Content and Authorship Analysis of the British Journal of Educational Technology. British journal of Educational Technology, 50(1), 12–63. https://doi.org/10.1111/bjet.12730

Buitrago, S., Duque, P., y Robledo, S. (2020). Branding Corporativo: una revisión bibliográfica. Económicas CUC, 41(1). https://doi.org/10.17981/econcuc.41.1.2020.Org.1

Bulley, C. A., Adu-Brobbey, V., & Duodu, E. O. (2018). Neuromarketing and the Potential Application of Scientific Methods in Measuring Consumer Behaviour. En Applications of Neuroscience (pp. 317–336). IGI Global. https://doi.org/10.4018/978-1-5225-5478-3.ch015

Casas-Frausto, A., Yail Márquez, B., Gutiérrez, R., & Sergio Magdaleno-Palencia, J. (2021). The Role Neuromarketing Emotion as Key to Defining Consumer Behavior. En Agents and Multi-Agent Systems: Technologies and Applications 2021 (pp. 385–394). Springer Singapore. https://doi.org/10.1007/978-981-16-2994-5_32

Chen, Y.-P., Nelson, L. D., & Hsu, M. (2015). From “Where” to “What”: Distributed Representations of Brand Associations in the Human Brain. JMR, Journal of Marketing Research, 52(4), 453–466. https://doi.org/10.1509/jmr.14.0606

Clavijo-Tapia, F. J., Duque-Hurtado, P. L., Arias-Cerquera, G., & Tolosa-Castañeda, M. A. (2021). Organizational Communication: A Bibliometric Analysis from 2005 to 2020. Clío América, 15(29). https://doi.org/10.21676/23897848.4311

Cornil, Y., Plassmann, H., Aron-Wisnewsky, J., Poitou-Bernert, C., Clément, K., Chabert, M., & Chandon, P. (2021). Obesity and Responsiveness to Food Marketing Before and After Bariatric Surgery. Journal of Consumer Psychology: The Official Journal of the Society for Consumer Psychology, 1221. https://doi.org/10.1002/jcpy.1221

Cruz, C. M. L., Medeiros, J. F. D., Hermes, L. C. R., Marcon, A., & Marcon, É. (2016). Neuromarketing and the Advances in the Consumer Behaviour Studies: A Systematic Review of the Literature. International Journal of Business and Globalisation, 17(3), 330. https://doi.org/10.1504/ijbg.2016.078842

Dávila Escobar, V., Castaño Rubio, C., Aristizábal, D., & Alzate Buitrago, A. (2021). Bibliometric review of the research overview on green concrets . In Competitive Risaralda, Generating Research Alliance for Development. Universidad Tecnológica de Pereira

Demiroz, F., & Haase, T. W. (2019). The Concept of Resilience: A Bibliometric Analysis of the Emergency and Disaster Management Literature. Local Government Studies, 45(3), 308–327. https://doi.org/10.1080/03003930.2018.1541796

Duque-Hurtado, P., Samboni-Rodríguez, V., Castro-García, M., Montoya-Restrepo, L. A., & Montoya-Restrepo, I. A. (2020). Neuromarketing: Its Current Status and Research Perspectives. Estudios Gerenciales, 525–539. https://doi.org/10.18046/j.estger.2020.157.3890

Duque, P., y Cervantes, L. S. (2019). Responsabilidad Social Universitaria: una revisión sistemática y análisis bibliométrico. Estudios Gerenciales, 35 (153), 451–464. https://doi.org/10.18046/j.estger.2019.153.3389

Duque, P., Meza, O. E., Giraldo, D., & Barreto, K. (2021). Economía social y economía solidaria: un análisis bibliométrico y revisión de literatura. REVESCO. Revista de Estudios Cooperativos, 138, e75566–e75566. https://doi.org/10.5209/reve.75566

Duque, P., Meza, O., Zapata, G., & Giraldo, J. (2021). Internacionalización de empresas latinas: evolución y tendencias. Económicas CUC, 42(1). https://doi.org/10.17981/econcuc.42.1.2021.Org.1

Duque, P., & Oliva, E. J. (2022). Tendencias emergentes en la literatura sobre el compromiso del cliente: un análisis bibliométrico. Estudios Gerenciales, 120-132. https://doi.org/10.18046/j.estger.2022.162.4528

Duque, P., & Ortiz, D. O. (2022). Perspectivas y tendencias de investigación en emprendimiento social. Desarrollo Gerencial, 14(1), 1-26. https://doi.org/10.17081/dege.14.1.5082

Duque, P., Toro, A., Ramírez, D., & Carvajal, M. E. (2020). Marketing viral: aplicación y tendencias. Clío América, 14(27), 454–468. https://doi.org/10.21676/23897848.3759

Duque, P., Trejos, D., Hoyos, O., & Chica, J. C. (2021). Finanzas corporativas y sostenibilidad: un análisis bibliométrico e identificación de tendencias. Semestre Económico, 24(56), 25–51. https://doi.org/10.22395/seec.v24n56a1

Echchakoui, S. (2020). Why and How to Merge Scopus and Web of Science During Bibliometric Analysis: The Case of Sales Force Literature from 1912 to 2019. Journal of Marketing Analytics, 8(3), 165–184. https://doi.org/10.1057/s41270-020-00081-9

Ferrer, G. G. (2019). Consumer Behaviors and Contemporary Attitudes in Luxury Markets. En Brand Culture and Identity (pp. 1132–1148). IGI Global. https://doi.org/10.4018/978-1-5225-7116-2.ch060

Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1), 35. https://doi.org/10.2307/3033543

Fugate, D. L. (2007). Neuromarketing: A Layman’s Look at Neuroscience and its Potential Application to Marketing Practice. Journal of Consumer Marketing, 24(7), 385–394. https://doi.org/10.1108/07363760710834807

Glova, B., & Mudryk, I. (2020). Application of Deep Learning in Neuromarketing Studies of the Effects of Unconscious Reactions on Consumer Behavior. 2020 IEEE Third International Conference on Data Stream Mining Processing (DSMP), 337–340. https://doi.org/10.1109/DSMP47368.2020.9204192

Gurzki, H., & Woisetschläger, D. M. (2017). Mapping the Luxury Research Landscape: A Bibliometric Citation Analysis. Journal of Business Research, 77, 147–166. https://doi.org/10.1016/j.jbusres.2016.11.009

Hakim, A., & Levy, D. J. (2019). A Gateway to Consumers’ Minds: Achievements, Caveats, and Prospects of Electroencephalography-Based Prediction in Neuromarketing. Wiley Interdisciplinary Reviews. Cognitive Science, 10(2), e1485. https://doi.org/10.1002/wcs.1485

He, L., Freudenreich, T., Yu, W., Pelowski, M., & Liu, T. (2021). Methodological Structure for Future Consumer Neuroscience Research. Psychology & Marketing, 38(8), 1161–1181. https://doi.org/10.1002/mar.21478

Ioannides, A. A., Liu, L., Theofilou, D., Dammers, J., Burne, T., Ambler, T., & Rose, S. (2000). Real Time Processing of Affective and Cognitive Stimuli in the Human Brain Extracted from MEG signals. Brain Topography, 13(1), 11–19. https://doi.org/10.1023/a:1007878001388

Javor, A., Kindermann, H., Koschutnig, K., & Ischebeck, A. (2018). The Neural Correlates of Trustworthiness Evaluations of Faces and Brands: Implications for Behavioral and Consumer Neuroscience. The European Journal of Neuroscience, 48(6), 2322–2332. https://doi.org/10.1111/ejn.14134

Juárez-Varón, D., Tur-Viñes, V., Rabasa-Dolado, A., & Polotskaya, K. (2020). An Adaptive Machine Learning Methodology Applied to Neuromarketing Analysis: Prediction of Consumer Behaviour Regarding the Key Elements of the Packaging Design of an Educational Toy. Social Sciences, 9(9), 162. https://doi.org/10.3390/socsci9090162

Kaheh, S., Ramirez, M., & George, K. (2021). Study on the Effect of Product Brand and Pricing Using Biosignals. 2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 1–4. https://doi.org/10.1109/INTERCON52678.2021.9532800

Kenning, P., Plassmann, H., & Ahlert, D. (2007). Applications of Functional Magnetic Resonance Imaging for Market Research. Qualitative Market Research: An International Journal, 10(2), 135–152. https://doi.org/10.1108/13522750710740817

Klucharev, V., Smidts, A., & Fernández, G. (2008). Brain Mechanisms of Persuasion: How “Expert Power” Modulates Memory and Attitudes. Social Cognitive and Affective Neuroscience, 3(4), 353–366. https://doi.org/10.1093/scan/nsn022

Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural Predictors of Purchases. Neuron, 53(1), 147–156. https://doi.org/10.1016/j.neuron.2006.11.010

Kühn, S., Strelow, E., & Gallinat, J. (2016). Multiple “Buy Buttons” in the Brain: Forecasting Chocolate Sales at Point-Of-Sale Based on Functional Brain Activation Using fMRI. NeuroImage, 136, 122–128. https://doi.org/10.1016/j.neuroimage.2016.05.021

Lee, N., Broderick, A. J., & Chamberlain, L. (2007). What is “Neuromarketing”? A Discussion and Agenda for Future Research. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 63(2), 199–204. https://doi.org/10.1016/j.ijpsycho.2006.03.007

Liaudanskaitė, G., Saulytė, G., Jakutavičius, J., Vaičiukynaitė, E., Zailskaitė-Jakštė, L., & Damaševičius, R. (2019). Analysis of Affective and Gender Factors in Image Comprehension of Visual Advertisement. En Advances in Intelligent Systems and Computing (pp. 1–11). Springer International Publishing. https://doi.org/10.1007/978-3-319-91189-2_1

Mandolfo, M., & Lamberti, L. (2021). Past, Present, and Future of Impulse Buying Research Methods: A Systematic Literature Review. Frontiers in Psychology, 12, 687404. https://doi.org/10.3389/fpsyg.2021.687404

McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural Correlates of Behavioral Preference for Culturally Familiar Drinks. Neuron, 44(2), 379–387. https://doi.org/10.1016/j.neuron.2004.09.019

Montazeribarforoushi, S., Keshavarzsaleh, A., & Ramsøy, T. Z. (2017). On the Hierarchy of Choice: An Applied Neuroscience Perspective on the AIDA Model. Cogent Psychology, 4(1), 1363343. https://doi.org/10.1080/23311908.2017.1363343

Morin, C. (2011). Neuromarketing: The New Science of Consumer Behavior. Society, 48(2), 131–135. https://doi.org/10.1007/s12115-010-9408-1

Muñoz-Leiva, F., Hernández-Méndez, J., & Gómez-Carmona, D. (2019). Measuring Advertising Effectiveness in Travel 2.0 Websites Through Eye-Tracking Technology. Physiology & Behavior, 200, 83–95. https://doi.org/10.1016/j.physbeh.2018.03.002

Ohme, R., Reykowska, D., Wiener, D., & Choromanska, A. (2009). Analysis of Neurophysiological Reactions to Advertising Stimuli by Means of EEG and Galvanic Skin Response Measures. Journal of Neuroscience, Psychology, and Economics, 2(1), 21–31. https://doi.org/10.1037/a0015462

Oliveira, J. H. C. de, & Giraldi, J. de M. E. (2019). Neuromarketing and its Implications for Operations Management: An Experiment with Two Brands of Beer. Gestão & Produção, 26(3). https://doi.org/10.1590/0104-530X3512-19

Perea Mosquera, L. N., Gaviria Arias, D., & Barrera-Rodríguez, A. M. (2021). Bioeconomics: a bibliometric analysis in Latin America and the Caribbean. In Competitive Risaralda, Generating Research Alliance for Development. Universidad Tecnológica de Pereira.

Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional Neuroanatomy of Emotion: A Meta-Analysis of Emotion Activation Studies in PET and fMRI. NeuroImage, 16(2), 331–348. https://doi.org/10.1006/nimg.2002.1087

Plassmann, H., & Karmarkar, U. R. (2015). Consumer Neuroscience. En The Cambridge Handbook of Consumer Psychology (pp. 152–179). Cambridge University Press. https://doi.org/10.1017/CBO9781107706552.006

Plassmann, H., & Mormann, M. (2017). An Interdisciplinary Lens on Consciousness: The Consciousness Continuum and How to (Not) Study It in the Brain and the Gut, A Commentary on Williams and Poehlman. The Journal of Consumer Research, 44(2), 258–265. https://doi.org/10.1093/jcr/ucx043

Plassmann, H., Ramsøy, T. Z., & Milosavljevic, M. (2012). Branding the Brain: A Critical Review and Outlook. Journal of Consumer Psychology, 22(1), 18–36. https://doi.org/10.1016/j.jcps.2011.11.010

Plassmann, H., Venkatraman, V., Huettel, S., & Yoon, C. (2015). Consumer Neuroscience: Applications, Challenges, and Possible Solutions. JMR, Journal of Marketing Research, 52(4), 427–435. https://doi.org/10.1509/jmr.14.0048

Ramos, V., Duque, P., & Vieira, J. A. (2021). Responsabilidad Social Corporativa y Emprendimiento: evolución y tendencias de investigación. Desarrollo Gerencial, 13(1), 1–34. https://doi.org/10.17081/dege.13.1.4210

Robledo, S., Osorio, G., y López, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoría de grafos. Revista vínculos, 11(2), 6–16. https://doi.org/10.14483/2322939X.9664

Rúa-Hidalgo, I., Galmes-Cerezo, M., Cristofol-Rodríguez, C., & Aliagas, I. (2021). Understanding the Emotional Impact of GIFs on Instagram through Consumer Neuroscience. Behavioral Sciences, 11(8). https://doi.org/10.3390/bs11080108

Rubaceti, N. A. B., Giraldo, S. R., & Sepulveda, M. Z. (2022). Una revisión bibliográfica del Fintech y sus principales subáreas de estudio. Económicas CUC, 43(1). https://doi.org/10.17981/econcuc.43.1.2022.Econ.4

Sánchez-Fernández, J., Casado-Aranda, L.-A., & Bastidas-Manzano, A.-B. (2021). Consumer Neuroscience Techniques in Advertising Research: A Bibliometric Citation Analysis. Sustainability: Science Practice and Policy, 13(3), 1589. https://doi.org/10.3390/su13031589

Schaefer, M., & Rotte, M. (2007). Favorite Brands as Cultural Objects Modulate Reward Circuit. Neuroreport, 18(2), 141–145. https://doi.org/10.1097/WNR.0b013e328010ac84

Schwarzkopf, S. (2015). Measurement Devices and the Psychophysiology of Consumer Behaviour: A Posthuman Genealogy of Neuromarketing. BioSocieties, 10(4), 465–482. https://doi.org/10.1057/biosoc.2015.3

Smidts, A., Hsu, M., Sanfey, A. G., Boksem, M. A. S., Ebstein, R. B., Huettel, S. A., Kable, J. W., Karmarkar, U. R., Kitayama, S., Knutson, B., Liberzon, I., Lohrenz, T., Stallen, M., & Yoon, C. (2014). Advancing Consumer Neuroscience. Marketing Letters, 25(3), 257–267. https://doi.org/10.1007/s11002-014-9306-1

Solnais, C., Andreu-Perez, J., Sánchez-Fernández, J., & Andréu-Abela, J. (2013). The Contribution of Neuroscience to Consumer Research: A Conceptual Framework and Empirical Review. Journal Of Economic Psychology, 36, 68–81. https://doi.org/10.1016/j.joep.2013.02.011

Stallen, M., Smidts, A., Rijpkema, M., Smit, G., Klucharev, V., & Fernández, G. (2010). Celebrities and Shoes on the Female Brain: The Neural Correlates of Product Evaluation in the Context of Fame. Journal Of Economic Psychology, 31(5), 802–811. https://doi.org/10.1016/j.joep.2010.03.006

Sturiale, L., & Scuderi, A. (2017). Interaction between the Emotional and Rational Aspects in Consumer Buying Process for Typical Food Products of Italy. En Applying Neuroscience to Business Practice (pp. 142–162). IGI Global. https://doi.org/10.4018/978-1-5225-1028-4.ch007

Tani, M., Papaluca, O., & Sasso, P. (2018). The System Thinking Perspective in the Open-Innovation Research: A Systematic Review. Journal of Open Innovation: Technology, Market, and Complexity, 4(3), 38. https://doi.org/10.3390/joitmc4030038

Trejos-Salazar, D. F., Duque, P. L., Montoya, L. A., y Montoya, I. A. (2021). Neuroeconomía: una revisión basada en técnicas de mapeo científico. Revista de Investigación, Desarrollo e Innovación, 11(2), 243–260. https://doi.org/10.19053/20278306.v11.n2.2021.12754

Valencia, H. D. S., Robledo, S., Pinilla, R., Duque, M. N. D., & Gerard, O. T. (2020). SAP Algorithm for Citation Analysis: An improvement to Tree of Science. Ingeniería e Investigación, 40(1), 45–49. https://doi.org/10.15446/ing.investig.v40n1.77718

Vecchiato, G., Toppi, J., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Bez, F., & Babiloni, F. (2011). Spectral EEG Frontal Asymmetries Correlate with the Experienced Pleasantness of TV Commercial Advertisements. Medical & Biological Engineering & Computing, 49(5), 579–583. https://doi.org/10.1007/s11517-011-0747-x

Venkatraman, V., Dimoka, A., Pavlou, P. A., Vo, K., Hampton, W., Bollinger, B., Hershfield, H. E., Ishihara, M., & Winer, R. S. (2015). Predicting Advertising Success beyond Traditional Measures: New Insights from Neurophysiological Methods and Market Response Modeling. JMR, Journal of Marketing Research, 52(4), 436–452. https://doi.org/10.1509/jmr.13.0593

Vera, B. M. A., Thelwall, M., & Kousha, K. (2019). Web of Science and Scopus language coverage. Scientometrics, 121(3), 1803–1813. https://doi.org/10.1007/s11192-019-03264-z

Wallis, W. D. (2007). A Beginner’s Guide to Graph Theory. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4580-9

Wei, Z., Wu, C., Wang, X., Supratak, A., Wang, P., & Guo, Y. (2018). Using Support Vector Machine on EEG for Advertisement Impact Assessment. Frontiers in Neuroscience, 12, 76. https://doi.org/10.3389/fnins.2018.00076

Yang, S., Keller, F. B., & Zheng, L. (2016). Social Network Analysis: Methods and Examples. SAGE Publications.

Yoon, C., Gonzalez, R., Bechara, A., Berns, G. S., Dagher, A. A., Dubé, L., Huettel, S. A., Kable, J. W., Liberzon, I., Plassmann, H., Smidts, A., & Spence, C. (2012). Decision Neuroscience and Consumer Decision Making. Marketing Letters, 23(2), 473–485. https://doi.org/10.1007/s11002-012-9188-z

Zhang, J., & Luo, Y. (2017). Degree Centrality, Betweenness Centrality, and Closeness Centrality in Social Network. En Atlantis Press (Ed.), Proceedings of the 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017) (pp. 300–303). https://doi.org/10.2991/msam-17.2017.68

Zhu, J., & Liu, W. (2020). A Tale of Two Databases: the use of Web of Science and Scopus in academic papers. Scientometrics, 123(1), 321–335. https://doi.org/10.1007/s11192-020-03387-8

Zupic, I., & Čater, T. (2015). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629

Zuschke, N. (2020). An Analysis of Process-Tracing Research on Consumer Decision-Making. Journal of Business Research, 111, 305–320. https://doi.org/10.1016/j.jbusres.2019.01.028

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2022 Cuadernos Latinoamericanos de Administración

Descargas

Los datos de descargas todavía no están disponibles.